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1.	 Dialysis is common laboratory procedure used to remove low molecular weight solutes from protein 
solutions.  Example situations include: removal of removal of free, unreacted label after 
fluorescently labeling a protein; and removal of urea from a denatured protein solution to allow 
refolding of the protein.  The protein solution is sealed inside a dialysis bag or tubing and placed in 
container with a large excess of pure water, as shown in the figure. The system is then allowed to 
come to equilibrium. For this problem, consider an idealized system where the only solute in the 
dialysis bag is the low molecular weight solute (i.e., no protein is actually present.) 

Initial state Equilibrium 
state 

(a) Explain why the combined system of the protein solution (system “A”) and the water (system “B”) 
may be considered to be an isolated system.   

The combined system can be considered an isolated system because neither the total matter, energy 
or volume changes.  System A or B individually are open systems. 

(b) Use a lattice model, with each individual water molecule occupying a single site in the lattice, to 
show that the entropy of System B is zero at the start of the experiment.  Designate the number of 
water molecules NWB and the number of total lattice sites MB. 

W = 
 M B  M B! 
 NwB 



= ( M − NwB ) !N !B wB 

Since this is a liquid, we can assume that a molecule must occupy every site, so MB=NwB, we get 
M B!W	= ( M − M B ) !M ! 

= 1 
B B 

S = k lnW = 0 

(c) Use a lattice model to express the entropy of system A at the start of the experiment in terms of the 
number of water molecules in system A, NwA, the number of solute particles, Ns, and the total 



number of lattice sites in system A, MA. For your final expression, use an appropriate 
approximation to eliminate factorial expressions.  You may assume that the water molecules and 
solute molecules are comparable in size. 

Again assume that a molecule must occupy every site, so MA=Ns+NwA, we get 

M A!
W = 

N !NwA!s 

Using Stirling’s approximation, 
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M A  (M )AS = k lnW = k ln
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But MA=NS+NwA, so 
M A  (M )AS = k lnW = k ln M A −NwA (N )NwA 

(M − NwA )A wA 

(d) Now write an expression for the entropy of the combined system under the conditions where water 
and solute can freely pass through the dialysis membrane. For every solute molecule that crosses 
over to system B, a water molecule must cross over to system A.  (You may want to keep track of 
the number of solute molecules by noting that NS =NSA+ NSB and the number of water molecules by 
noting that NWA + NWB = NW). 

 M A! M B!  
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(e) Show that you can write the entropy expression in terms of one system variable (i.e., one parameter 
that changes value during the progress of the experiment), and briefly describe how to determine the 
equilibrium condition in terms of that variable and constants in the system.  [You do not need to 
work out the equilibrium condition (lots of algebra involved) but feel free to predict what it is if you 
like.] 

Write entropy in terms of NSA. 
NS = NSA + NSB 

S = k ln
 M A! M B!  

(M − NSA )!N ! (M − NS + NSA )!(N − NSA )!A SA B S 

In order to determine the equilibrium point, use Stirling’s approximation to simplify the expression, 
and then take the derivative. 



 M A
M A 

M B − NS + NSA ( N − NSA ) NS − NSA S = k ln
( M − NSA ) M A − NSA NSA

NSA ( M − NS + NSA ) 
M B

M B 

A B S  
S
k 
= M A ln M A − ( M A − NSA ) ln( M A − NSA )− NSA ln NSA + M B ln M B 

− ( M − NS + NSA ) ln( M − NS + NSA )− ( N − NSA ) ln( N − NSA )B B S S 

dNk 
1 dS 

= 0 + ln( M A − NSA )+ 1− ln N − 1+ 0 − ln( M − NS + NSA )− 1+ ln( NS − NSA )+ 1 
SA 

SA B 

( M − NSA )( N − NSA )A S
= ln
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Set derivative equal to zero. 
( M − NSA )( N − NSA )A S0 = ln
 NSA ( M − NS + NSA ) B 

⇒ ( M − NSA )( N − NSA ) = N ( M − NS + NSA )A S SA B 

Dividing both sides by MAMB, and substituting in NSB=NS+NSA 

( M − NSA )( N ) NSA ( M − NSB )A SB = B 
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When this is the case, the concentrations are equal. 

(f) Is work done in the approach to equilibrium? Explain why or why not. 

Work is not done in the approach to equilibrium, because there is no volume change associated with 
either system. 

δ w = pdV = .0 

(g) Does the internal energy U of the system change?  Explain why or why not. 

Since we are assuming an isolated system, no energy or matter can flow in or out, so the internal 
energy cannot change. 

a) For a van der Waals gas, the work done is 
δ wvdW = − PdV 

V2 V2 

= −∫ PdV = −∫ 
RT 

− 
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− 
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7.1 



7.3 

b) For an ideal gas, the work done is 
δ wideal = − PdV 

V2 V2 RT wideal = −∫ PdV = −∫ dV
VV1 V1 

= RT ln

 

V1 
 

 V2  
If we are compressing the gas, then V1>V2, so 

ln
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 < ln

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V1 
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 1 1 

−  > 0 
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Thus we need to delve a little deeper to see which type of gas requires more work to compress.  When 
the gas is less dense, the volume is large, and the logarithmic term dominates.  Since the logarithmic 
term for the van der Waals gas’ expansion is less than that for the ideal gas, at the low density limit it 
takes less work to compress a van der Waals gas.  When the density is high, the volume is low, so the 
1/V term is dominant, and thus the van der Waals gas requires more work to compress. 

a) Here, we are considering change in volume (freezing) of water under constant (atmospheric) 
pressure. So the work is given by 

δ w = − PdV 
V2 

(w = −∫ PdV = − V P 2 − V )1 
V1 

We thus need to know the volume of the water before and after freezing.  Since we are given the initial 
volume, and the densities before and after freezing, this is a simple calculation. 

3 − 6 3V1 = ( 2cm) = 8cm3 = 8× 10 m 
3m1 = m2 = m = ( 2cm) 000.1 g = 8g3cm 

V2 = 
m 

g 
= 743.8 cm3 = 10 743.8 − 6 m× 3 

915.0 3cm 

Now it is a simple matter of plugging into the formula, and calculating out the result.  Recall that 1 atm 
is 101 325 Pa, a Pascal is a 

× − 6 3 3Newton per meter squared, w = −( 1atm)( 10 743.8 m − 8× 10− 6 m )
and that a Joule is a 

= −( 101325 × m 
N − 6 3 3)( 10 743.8 m − 8× 10− 6 m )2Newton meter.  

= − 074.0 J 

b) This is work done by the expansion of the water into ice, so 0.074J of work is done by the system, or 
-0.074J of work is done on the system. 



7.4 
a) We start with the equation for differential entropy. 

1 PdS = dU + dV −∑
µ j dN jT T T 

η RTFor dependence on V, assume dU=dNj=0. Also P =  for an ideal gas.
V 

P η kdS = dV = dV
T V 

V2ηk
∆ S = ∫ dV =ηk ln


 
V2 

 
V1 

V  V1  

b) For the volume doubling, the entropy change is 

∆ S =ηk ln 
2 
 = − 69.0 ηk 

 1  

7.5 
From 7.1, we have 

w =ηRT ln
 V1 

 
 V2  

=ηRT ln 
1 
 = − 69.0 ηRT 

 2  

7.7 Here will we assume that we are dealing with an ideal gas. 

Step 1 – Constant volume 
δ w1 = − PdV 

There is no volume change, so w1=0. 

Step 2 – Constant pressure 
δ w2 = − PdV 

V2 

(w2 = −∫ PdV = − V P 2 − V )1 
V1 

= − (300atm 2 )( cm3 − 1cm3) 

2 × − 6 3= −( 101325 * 300 N )( 10 1 m )m 

= − 4. 30 J 

Step 3 



Again, there is no volume change, so w3=0. 

Step 4 
δ w2 − = PdV 

V2 

(w2 − = ∫ PdV − = V P 2 − V1 ) 
V1 

− = (100atm 1)( cm3 − 2cm3) 
3− = ( 101325* 100 N )( × − 10 1 − 6 m )2m 

= 1.10 J 

So, 
= w1 + w2 + w3 + w4wnet 

= 0 − 4.30 J + 0 + 1.10 J 
− = 3.20 J 

This means that 20.3J of work is done by the system. 

7.8 
TcFor a Carnot engine, the efficiency η is given by η − ≤ 1 .
Th 

a) for Th = 380K and Tc = 273K 
2731η − ≤
380


≤ 282.0


b) for Th = 380K and Tc = 323K 
3231η − ≤
380


≤ 15.0



