BE.011/2.772
Problem Set 5
Due March 17, 2004
Dill 9.1, 9.3, 9.8 and 9.10
9.1
a) We are given $\gamma(T)=b-c T$, and the values of the constants b and c . We also know that $d U=T d S-p d V+\gamma d a$. We want to get an expression for γ in terms of a derivative of the Gibbs free energy, so we must first get an expression for the Gibbs free energy.

$$
\begin{aligned}
G & =H-T S=U+p V-T S \\
d G & =d U+p d V+V d p-T d S-S d T \\
& =-S d T+V d p+\gamma d a
\end{aligned}
$$

To get an expression for γ in terms of a derivative of the Gibbs free energy, we merely have to take the derivative of G with respect to a at constant T and p.

$$
\left(\frac{\partial G}{\partial a}\right)_{p, T}=\gamma
$$

b) We know that

$$
\left(\frac{\partial S}{\partial a}\right)_{p, T}=\frac{\partial}{\partial a}\left(-\frac{\partial G}{\partial T}\right)
$$

Switching the order of the derivatives we get that

$$
\left(\frac{\partial S}{\partial a}\right)_{p, T}=-\left(\frac{\partial^{2} G}{\partial T \partial a}\right)=-\frac{\partial}{\partial T}\left(-\frac{\partial G}{\partial a}\right)=-\left(\frac{\partial \gamma}{\partial T}\right)_{p, a}
$$

But we know that $-\left(\frac{\partial \gamma}{\partial T}\right)_{p, a}$ is non-other than c. So $\left(\frac{\partial S}{\partial a}\right)_{p, T}=c=0.167 \mathrm{erg} / \mathrm{cm}^{2} \mathrm{deg}$.
c)

$$
\left.\begin{array}{rl}
\Delta S & \approx\left(\frac{\partial S}{\partial a}\right) \Delta a=c \Delta a \\
& \approx\left(0.167 \mathrm{erg} / \mathrm{cm}^{2} \operatorname{deg}\right.
\end{array}\right)(4 \stackrel{o}{\mathrm{~A}})\left(\frac{1 \mathrm{~cm}}{10^{8} \mathrm{~A}}\right)^{2}
$$

9.3 We are given that $\left(\frac{\partial U}{\partial V}\right)_{T}=0$, and we are asked to show that this implies that $C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}$ is not a function of V. For this, we need only prove that $\frac{\partial C_{V}}{\partial V}=\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial T}\right)_{V}=0$. But we know that we can permute the order of the derivatives, so we get that $\frac{\partial C_{V}}{\partial V}=\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial T}\right)_{V}=\frac{\partial}{\partial T}\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{\partial}{\partial T}(0)=0$. Thus, the constant volume heat capacity of an ideal gas is independent of volume.
9.8 The first thing to note is that if we take the cross derivatives of $d U$, we end up getting $\left(\frac{\partial f}{\partial p_{0}}\right)_{E, S}$ rather than $\left(\frac{\partial p_{0}}{\partial f}\right)_{E, T}$ which we want. We need to first transform our equation to a new energy variable $X(T, f, E)$.

$$
\begin{gathered}
d U=T d S+f d l+E d p_{0} \\
X=U-T S-f l-E p_{0} \\
d X=S d T-l d f-p_{0} d E
\end{gathered}
$$

Now if we take the cross derivatives we can get an expression for $\left(\frac{\partial p_{0}}{\partial f}\right)_{E, T}$.

$$
\left(\frac{\partial p_{0}}{\partial f}\right)_{E, T}=\left(\frac{\partial l}{\partial E}\right)_{f, T}
$$

This is useful, because we are likely able measure how the length of the crystal changes with the field $\left(\frac{\partial l}{\partial E}\right)_{f, T}$.
9.10
a) The first thing to note in this question is that we are considering T and p as variables (which we end up holding constant). That means that we need to use the Gibbs free energy.

$$
\begin{aligned}
G & =H-T S=U+p V-T S \\
d G & =d U+p d V+V d p-T d S-S d T \\
& =-S d T+V d p+f d l
\end{aligned}
$$

Now we want to create a Maxwell relation between S and f in order to get a function for S.

$$
\begin{aligned}
\left(\frac{\partial^{2} G}{\partial l \partial T}\right) & =\left(\frac{\partial^{2} G}{\partial T \partial l}\right) \\
\frac{\partial}{\partial l}\left(\frac{\partial G}{\partial T}\right)_{l, p} & =\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial l}\right)_{T, p} \\
-\left(\frac{\partial S}{\partial l}\right)_{T, p} & =\left(\frac{\partial f}{\partial T}\right)_{p, l} \\
\left(\frac{\partial S}{\partial l}\right)_{T, p} & =-\frac{\partial}{\partial T}\left(a T\left(l-l_{0}\right)\right) \\
& =-a\left(l-l_{0}\right) \\
S(l) & =\int_{l_{0}}^{l}-a\left(l-l_{0}\right) d l \\
S(l) & =-\frac{a\left(l-l_{0}\right)^{2}}{2}
\end{aligned}
$$

So the entropy is proportional to the square of the extension distance.

$$
\begin{aligned}
H & =U+p V \\
d H & =d U+p d V+V d p \\
& =T d S+V d p+f d l \\
\left(\frac{d H}{d l}\right)_{T, p} & =T\left(\frac{d S}{d l}\right)_{T, p}+f \\
& =T\left(-a\left(l-l_{0}\right)\right)+a T\left(l-l_{0}\right) \\
& =0
\end{aligned}
$$

So H is constant for all extensions l.
b) Since we are told that it is an adiabatic process ($\delta q=0$, so $d U=\delta w=f d l$), we know that we need to start with the expression for internal energy U. We also know that by definition, for constant volume $d U=C_{\vee} d T$.

$$
\begin{aligned}
d U & =f d l \\
C_{v} d T & =a T\left(l-l_{0}\right) d l \\
\frac{C_{v}}{T} d T & =a\left(l-l_{0}\right) d l \\
\int_{T_{1}}^{T_{2}} \frac{C_{v}}{T} d T & =\int_{l_{0}}^{l} a\left(l-l_{0}\right) d l \\
C_{v} \ln \left(\frac{T_{2}}{T_{1}}\right) & =\frac{a\left(l-l_{0}\right)^{2}}{2} \\
\frac{T_{2}}{T_{1}} & =\exp \left[\frac{a\left(l-l_{0}\right)^{2}}{2 C_{v}}\right]
\end{aligned}
$$

