20.106J – Systems Microbiology Lecture 12 Prof. DeLong

- Chapter 15 Brock
- Demonstration: Prof. Delong shows us a 48 capillary array DNA sequencing device with an optical detector.
 - You can do some 500 runs on the same polymer
 - Then Prof. Delong shows us a 1.5 million well plate you can do 1.5 million sequencing reactions all at once
 - Each well is around 60 microns across, and you get one bead in each well
- Genomics II
 - Comparative genomics basics
 - Gene calling
 - Bioinformatics web resources there are a huge number of tools
 - Genomics of insect endosymbionts
- We each have around 10¹⁴ microbes associated with us, that we carry around in our bodies
 - We all have our own genes that predispose us to certain diseases
 - It's not that well understood how the human-associated microbe interacts with human genetics
 - There are some really neat studies going on right now involving how mice genetics determine which microbes live in the mouse's gut
- Genomics is the starting point
- What do we do with a sequence, once assembled?
 - The first thing to do is to translate it into the reading frame look at which codons, and start to discover what the genes are
 - The range of the number of base pairs and genes stretch from around 400 protein encoding genes up to around 10,000.
 - The organisms with the fewest genes are obligate endosymbionts
 - The ones with the most genes are more metabolically versatile
 - Remember that bacterial and archeal genomes are circular.
- If you look at a bacterial sequence...
 - Table: Gene functional groups identified in the DNA sequence of E. coli K-12
 - To this day, only around 60% of E. coli genes have been identified and described – and E. coli is the most well understood microorganism in the world
 - This is getting better, but it's still kind of a sobering thought.

- Table: Gene function in bacterial genomes: percentage of genes on chromosome in each functional category
 - A larger proportion of the genes in smaller genomes are related to transcription and translation, because those are essential.
 - In larger genomes, a greater percentage is devoted to other functions, which are expendable in the smaller genomes.
- Graph: Relative percent of ORFs vs. Total ORFs in genome
- Figure: Different strains of E. coli can differ by ~1Mbp!
 - Non-pathogenic, uropathogenic, and enterohaemorrhagic
 - Only around 40% of their genes are found in all three strains
 - Around 47% of the genes are found in only one strain.
 - E. coli can have many different phenotypes depending on these genes
- Diagram: Human genes are shared with...
 - Less than one percent of human genes are unique to humans
- Kyoto Encyclopedia of genes and genomes (KEGG)
 - Metabolic maps that you can pull off the Web
 - KEGG map Prochlorococcus marinus
 - Figure 15-7 from Brock: a diagram of the many identified genomic activities going on inside a cell – a model of what the cell is doing with its DNA
- How do you make sense of a DNA sequence? How do you find the genes from just the list of A, T, C, and G?
 - You can recognize the genetic code from the start and stop sites this lets you know where there might be gene sites
 - You have to figure out what the right reading frame are there are always three possible frames.
 - You can use a program to find open reading frames
 - Gene finding current methods.
 - Homology method/Extrinsic method use other genomes that have already been sequenced, and compare
 - Gene prediction method/Intrinsic method look at the codon content
 - Content sensors and gene prediction tools there are many different programs
 - Demonstration: Prof. Delong pastes a DNA sequence (around 70 kilobase pairs) from a marine microorganism into a sample commercial program on the web
 - It gives back a list of possible genes, with around one gene for every thousand base pairs
 - These possible genes are then pasted into another program: BLAST.
 - It compares the sequences with known genes

- As it turns out, the sequence in question was already in the database, because the genes all match up perfectly with genes that have already been sequenced
- These genes are probably involved in cell wall synthesis
- BLAST lets you compare nucleotides to nucleotides and protein sequences to protein sequences
- The possibilities are out there for comparing almost any sequence that you might have.
- Bit score
- The statistics depend on:
 - The size of the database you're comparing to (this can be corrected for)
 - The length of your sequence (this is what it really depends on)
- There are a number of different ways that you can compare genomes
 - Operons are different in different organisms this is useful
- COGs Clusters of Orthologous Groups
- You can categorize genes in different ways
- What else can you do with all these protein-encoding genes?
 - o DNA microarrays
 - Proteomics isolate proteins from cells, cleave proteins with proteases or CNBr, fractionate proteins, detect and identify proteins
 - We used to do this with gels. Now we can put the whole tissue in a mass spectrometer.