20.106J – Systems Microbiology Lecture 5 Prof. DeLong

- Reading: p533-555, Bioenergetics and Metabolic Diversity
- ➤ Today:
 - Basic modes of energy generation
 - Thermodynamics of growth (continued)
 - Applications of microbial chemolithotrophy and anaerobic respiration
- Review: Most of the energy in the atmosphere today comes from photons from the sun – it's like a big solar cell
 - Cyclic photophosphorylation extracting energy via excited electrons and the electron transport chain
 - The fundamentals of how you get to ATP is the same for phototrophs and autotrophs
 - There is a lot of diversity in anoxygenic phototrophs
 - Using photon energy to strip electrons off of water
 - You're not going to use up your source of energy
 - Waste product is oxygen allows other, heterotrophic life
 - Rhodopsins Haloarchaea live in hypersaline habitats
 - They can live in salt crystals if there's water available
 - They get energy from light via a simple protein rhodopsin
 - Organic molecule absorbs a photon, changes shape, and then the whole protein changes, allowing the cell to transport an electron from inside the cell to outside → concentration gradient
 - There are two types of microbial rhodopsins: light-driven ion pumps and sensory rhodopsins
 - We have sensory rhodopsins in our eyes
 - There are different sorts of rhodopsins that exist in bacteria that live almost anywhere in the ocean
 - With retinal in bacteria you can produce proton pumping
 - Rhodopsin is a new kind of light-driven energy generation
 - There's even evidence that it's being laterally transferred
 - Rhodopsin-using hybrids could be likened to hybrid automobiles.
 - Rhodopsin allows them to charge a battery
- Where do organisms get their energy?
 - Chemolithotrophs: Oxidize inorganic compounds

Chemoorganotrophs: Oxidize organic compounds

- Neither of these types needs to use oxygen to dump their electrons onto. Oxygen isn't always available in many environments
- NADH from glycolysis can be used in energy pathways donate electrons, forming chemi-osmotic gradient

- Organisms that don't use oxygen have similar electron transport chains, they just don't use oxygen as the final electron acceptor. Often, they use iron, sulfate, or nitrate.
- Chemolithotrophs are the same story
- These kinds off microbes are important, for example, in aquariums. You use them to keep the fish from dying of ammonium poisoning from their own waste.
- Applications
 - o The nitrogen from fertilizers gets into ground waters → Anammox:
 "Anaerobic Ammonium Oxidation."
 - This is a pretty new method.
 - Broda predicted (solely based on the thermodynamics) that microbes that do this must exist: $NH_2 + NO_2^- \longrightarrow N_2 + 2H_2O$
 - If a favorable niche exists, then something will evolve to fill it
 - The microbes were discovered ten years ago
 - These microbes produce hydrazine, which is *very* reactive (rocket fuel)
 - The organisms contain this reactive hydrazine within special pockets
 - These organisms are not easy to grow, but with the right conditions you can do it
 - These organisms also do carbon dioxide removal as well as nitrogen removal
 - People have built big plants that do this very efficiently now, particularly in the Netherlands
 - Denitrifiers are another way you can remove nitrogen
 - Picture: Geobacter growing on iron hydroxides. They grow on a solid, not in a solution
 - Microbial redox interactions with uranium: an environmental perspective
 - If you look at a sediment, you can predict where the different types of reduction are going to occur on each level.
 - This has to do with energetics it explains the order (ΔG_0)
 - Microbial bioremediation of uranium
 - Uranium (VI) is water soluble, radioactive, and toxic, and it can end up in ground water (produced by energy production and nuclear bombs)
 - These microbes convert uranium (VI) to uranium (IV), which is insoluble, so it won't end up in the ground water.
 - All you need to do is add acetates and the microbes (which are already everywhere) will convert the uranium (VI), which then precipitates and falls out of the moving water.
 - o Geobacter can use electrodes as an electron acceptor
 - Thus allowing us to harvest power from aquatic sediments and other sources of waste organics
 - Microbial fuel cell, powered by residual organics

- These aren't very powerful, but they can run small systems
- How do these organisms dump electrons onto a solid?
 - It's not terribly well understood
 - It involves the pili they transmit electrons
- Deep-sea methane hydrates are buried in sediments off of continental margins worldwide
 - They hold huge amounts of carbon in them there's more carbon in these deposits than there is in petroleum desposits
 - Methane can burn without oxygen: $CH_4 + 2H_2O \longrightarrow CO_2 + 4H_2$
 - However, methanogens drive the reaction in reverse. It doesn't really go forward.
 - Instead, we can use this reaction:

 $CH_4 + SO_4^{2-} \longrightarrow HCO_3^- + HS^- + H_2O$

• There's no individual microbe known that can do this, but they *can* do it in teams. Microbiologically:

 $CH_4 + SO_4^{2-} \longrightarrow HCO_3^- + HS^- + H_2O: \Delta G'_0 = -25 \text{ kJ/mol}$

- This is a very small amount of energy per mole. Difficult, but it does work. (It's believed that -20kJ/mol would be at the limit of feasibility.)
- Two different types of microbes work together symbiotically so that this total reaction runs.
- This can control methane on a global scale
- All of these applications can be figured out largely from basic principles, so they're very powerful.