20.106J – Systems Microbiology Lecture 24 Prof. Schauer

- Final Exam next week
- The main focus of the final exam is going to be our last eight lectures: the topics listed below
 - The format will be similar to the format of the tests
 - Open-ended questions
 - You need to know the concepts you do not need to memorize specific details
 - There will also probably be a couple of questions about the lectures from earlier in the course, given by Prof. DeLong
- Topics:
 - o 1: Growth Control
 - Physical growth control
 - Heat and autoclaving
 - The kind of cell death that occurs with heat
 - Chemical growth control
 - Outside of the body
 - Strategies of controlling microbes on surfaces, etc.
 - Antibiotics
 - Inhibition of cell wall synthesis, ribosomes
 - Beta-lactam antibiotics
 - Know why these don't interfere with protein synthesis in our own cells
 - Antibiotic design requires targeting a feature that is unique to bacterial cells, and not human ones. Asking you to formulate a hypothetical new antibiotic would a be a reasonable question on the test.
 - Antibiotic resistance
 - Know that the existence of antimicrobial resistance predated our own medical use of antibiotics. Why is that?
 - o 2: Microbe-host Interactions
 - Healthcare-associated infections (HAI)
 - Know about the acquisition of drug resistance by some of these microbes in people
 - VRE, MSRA
 - The fear of developing a superbug that we have to drug to treat
 - Commensal microbiota (ecology, models)
 - You should be familiar with the concept that there are microbes that live in every living thing on earth

- Know about the development of a climax community of microbiota in the human gut as people grow up from infants to adults
- Gnotobiotic animals: in the lab, people can create rabbits, mice, or pigs grown in a sterile environment so that they have no microbiota inside them.
- You might be able to make some comparisons between our endosymbionts and those of aphids
- o 3.4: Immunology I and II
 - Immune cells
 - Be familiar with the main components of the immune system
 - Know the main components of lymphocytes
 - Know what B and T cells do once they become activated, what they secrete
 - Inflammation, phagocytosis
 - Natural immunity
 - Getting microbes out of the injured site
 - Adaptive immunity (Ag, MHC, T, B)
 - Know the way that antibodies recognize antigens, as compared to the way that T cells can recognize them
 - B cells bind to conformational antigens
 - Affinity maturation
 - Creates a little extra diversity in a B cell response
 - However, this does not happen in T cells, because it would be catastrophic to have T cells that recognize different things – you don't want them to start attacking your own cells. They need to recognize your own MHC
 - Vaccines (types)
 - Know about the general types of vaccines
 - You won't have to name specific vaccines
 - Understand the range of successful vaccines that have been used
 - For example, there's the TB vaccine, which only protects against childhood TB. You can't give a vaccine like that to immuno-suppressed people it could kill them
 - Anergy (tolerance)
 - Hypersensitivity
 - Type I: IGE
 - Type IV: TB test is an example
- 5: Diagnostic Microbiology
 - Exotoxins: A-B toxins, SAg (Super antigens)
 - Super antigens bind to the conserved parts of the TCR and the APC

- They stimulate large numbers of T cells that share common variable regions of the Beta chain
- Whole sale stimulation, release of large quantities of cytokines
- Selective, differential media
 - Selective media to inhibit growth of commensals
 - You can also make differential media, such as adding sugars or pH sensitive dyes
- MAb, serology
- 6: Person-to-person Transmission
 - TB (risk factors, pathogenesis)
 - Many people get exposed, many people develop latent infections
 - If they become immuno-suppressed, they can develop active TB
 - Influenza
 - Antigenic shift
 - Large, sudden changes
 - Antigenic drift
 - Small changes in the proteins compromise the
 - ability of your system to protect you from the virus
 - Hp
- Only a small proportion actually develop peptic ulcer disease
- o 7: Epidemiology
 - Terms
 - Incidence, prevalence, control, transmission
 - Emerging infectious diseases
- 8: Arthropod-borne and Zoonotic Diseases
 - Plague (epidemiology, pathogenesis)
 - Wild rodents, transmission through fleas on a sporadic basis
 - Be familiar with how plague affects the flea life cycle, causing it to bite more people
 - Bubonic, Systemic, and Pneumonic forms of plague