20.110/5.60/2.772 Fall 2005
 Homework \#4 Due Friday October 14

1. Consider the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ into $\mathrm{NO}_{2}(\mathrm{~g})$ described by

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Assuming that we start with n_{0} moles of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ and no $\mathrm{NO}_{2}(\mathrm{~g})$, show that the extent of reaction, $\xi_{e q}$, at equilibrium is given by

$$
\frac{\xi_{\text {eq }}}{n_{0}}=\left(\frac{K_{p}}{K_{p}+4 p}\right)^{1 / 2}
$$

Plot $\xi_{e q} / n_{0}$ against p given that $K_{p}=6.1$ at $100^{\circ} \mathrm{C}$. Is your result in accord with Le Châtelier's principle?
2. In Problem 1 you plotted the extent of reaction at equilibrium against the total pressure for the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ to $\mathrm{NO}_{2}(\mathrm{~g})$. You found that $\xi_{\text {eq }}$ decreases as p increases, in accord with Le Châtelier's principle. Now let's introduce $n_{\text {inert }}$ moles of an inert gas into the system. Assuming that we start with n_{0} moles of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ and no $\mathrm{NO}_{2}(\mathrm{~g})$, derive an expression for $\xi_{e q} / n_{0}$ in terms of p and the ratio $r=n_{\text {inert }} / n_{0}$. Let $K_{p}=6.1$ and plot $\xi_{e q} / n_{0}$ verses p for $r=0, r=0.50, r=1.0$, and $r=2.0$. Show that introducing an inert gas into the reaction mixture at constant pressure has the same effect as lowering the pressure. What is the effect of introducing an inert gas into a reaction system at constant volume (your answer should be qualitative, no need for a calculation)?
3. The value of $K_{P}=34.8$ at $1000^{\circ} \mathrm{C}$ for the decomposition of carbonyl dichloride (phosgene) according to

$$
\mathrm{COCl}_{2}(\mathrm{~g})=\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

if the standard state is taken to be one bar. What would the value of K_{P} be if for some reason the standard state were taken to be 0.500 bar? What does this result say about the numerical values of equilibrium constants?
4. Use the Gibbs free energy of hydrolysis of ATP at $25^{\circ} \mathrm{C}$ and 1 bar to answer the following questions. ATP hydrolysis proceeds according to

$$
\mathrm{ATP}+\mathrm{H}_{2} \mathrm{O}=\mathrm{ADP}+\text { Phosphate } .
$$

(a) Calculate the $\Delta \mathrm{G}$ for the reaction when $[\mathrm{ATP}]=10^{-2} \mathrm{M}$ and $[\mathrm{ADP}]=10^{-4} \mathrm{M}$ and [phosphate] $=10^{-1} \mathrm{M}\left(\Delta \mathrm{G}^{0}\right.$ for this reaction is $\left.-31 \mathrm{~kJ} / \mathrm{mol}\right)$.
(b) Calculate the maximum available work under the conditions of part (a) when 1 mole of ATP is hydrolyzed.
(c) Calculate $\Delta \mathrm{G}$ and the maximum available work if $[\mathrm{ATP}]=10^{-7} \mathrm{M},[\mathrm{ADP}]=10^{-1} \mathrm{M}$ and $[$ phosphate $]=2.5 \times 10^{-1} \mathrm{M}$.
(d) What is the equilibrium constant? What are the equilibrium concentrations for the conditions given in aprt (a)?
(e) The value of $\Delta \mathrm{H}^{0}$ for ATP hydrolysis is $-71 \mathrm{~kJ} / \mathrm{mol}$. What is the equilibrium constant at $37{ }^{\circ} \mathrm{C}$? At $42{ }^{\circ} \mathrm{C}$? At the temperature of thermophilic bacteria $\left(60{ }^{\circ} \mathrm{C}\right)$?
5. It is often easier to measure the free energy difference between two processes than to measure absolute changes in each process. For example, in the case of protein folding, one can look at the difference in free energy $(\Delta \Delta \mathrm{G})$ upon making a point mutation.
(a) Show that for a protein, the difference in free energy for the protein unfolding process upon making a single mutation is $-\mathrm{RT} \ln \mathrm{K}_{\mathrm{mut}} / \mathrm{K}_{\mathrm{wt}}$. (where mut is the mutated protein and $w t$ is the wild type protein). The reaction for protein unfolding is $\mathrm{P}_{\text {folded }}=\mathrm{P}_{\text {unfolded }}$.
(b) For coiled-coil protein GCN4, a researcher claimed that mutation of Lys-54 to His, results in a net stability of $10 \mathrm{kcal} / \mathrm{mol}$ in the folding reaction $\mathrm{GCN4}_{4}$ folded $=$ $\mathrm{GCN} 4_{\text {unfolded }}$ (i.e., the equilibrium is shifted towards the folded protein). Write the equilibrium constant for mutated GCN4 in terms of wild type GCN4.
6. Chemical Potential.
(a) Using $\mathrm{dG}=\mathrm{VdP}-\mathrm{SdT}+\sum \mu_{\mathrm{i}} \mathrm{dn}_{\mathrm{i}}$ show that

$$
\left(\frac{\partial}{\partial n_{i}}\right)\left(\frac{\partial V}{\partial T}\right)=\left(\frac{\partial}{\partial T}\right)\left(\frac{\partial \mu_{i}}{\partial P}\right)
$$

(b) Consider the following reaction:

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})+1 / 2 \mathrm{~N}_{2}(\mathrm{~g})
$$

Calculate $\Delta \mathrm{G}^{0}$ and K at $25^{\circ} \mathrm{C}$ at 1 bar assuming the Gibbs free energy of formation of NO is $86.7 \mathrm{~kJ} / \mathrm{mol}$, that of CO_{2} is $-394 \mathrm{~kJ} / \mathrm{mol}$ and that of CO is $-137 \mathrm{~kJ} / \mathrm{mol}$. (All values given for standard state reactions). Is the reaction favored to the right or the left?
7. In class we showed that $\left(\frac{\partial \ln K}{\partial T}\right)_{p}=\frac{\Delta H^{0}}{R T^{2}}$ (van't Hoff's Equation):
(a) Sow that this equation can be re-written as:

$$
\left(\frac{\partial \ln K}{\partial(1 / T)}\right)_{p}=\frac{-\Delta H^{0}}{R}
$$

(b) Consider the following reaction:

$$
\mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO}
$$

Estimate the partial pressure of NO in equilibrium with 0.8 bar N_{2} and 0.2 bar O_{2} at 25 ${ }^{\circ} \mathrm{C}$ and at $1000{ }^{\circ} \mathrm{C}$. Assume that $\Delta \mathrm{H}^{0}$ is independent of temperature. The enthalpy of formation of NO is $90.35 \mathrm{~kJ} /$ mole and the Gibbs free energy of formation is 86.7 kJ/mole.
8. Consider the dissociation reaction of $\mathrm{I}_{2}(\mathrm{~g})$ described by

$$
\mathrm{I}_{2}(\mathrm{~g})=2 \mathrm{I}(\mathrm{~g})
$$

The total pressure and the partial pressure of $\mathrm{I}_{2}(\mathrm{~g})$ at $1400^{\circ} \mathrm{C}$ have been measured to be 36.0 torr and 28.1 torr, respectively. Use these data to calculate K_{P} (one bar standard state) and K_{P} (one mole $\cdot \mathrm{L}^{-1}$ standard state) at $1400^{\circ} \mathrm{C}$.

