20.110/2.772/5.601 Fall 2005

Recitation \#1

 9/13/20051. (adapted from Gaskell 2.1)A quantity of neon gas occupies 10 L at 10 atm and 100 K . Assuming neon behaves as an ideal gas, calculate (1) the final volume of the system, (2) the work done by the system, (3) the heat entering/leaving the system, and (4) the internal energy change if the system undergoes:
a. A sudden isothermal expansion to 1 atm
b. A reversible isothermal expansion to 1 atm.
c. A reversible adiabatic expansion to 1 atm.
2. One mole of nitrogen at $25^{\circ} \mathrm{C}$ and 1 bar is expanded reversibly and isothermally to a pressure of 0.132 bar. (SAB 2.10)
a. What is the value of w ?
b. What is the value of w if the nitrogen is expanded to the same volume as in part a against a constant pressure of 0.132
3. A mole of argon is allowed to expand adiabatically and reversibly from a pressure of 10 bar and a temperature of 298.15 K to a pressure of 1 bar. What is the final temperature and how much work is done or the argon? (SAB 2.18)
4. A tank contains 20 L of compressed nitrogen at 10 bar and $25^{\circ} \mathrm{C}$. Calculate w when the gas is allowed to expand reversibly to 1 bar (a) isothermally and (b) adiabatically. (SAB 2.19)
