20.110/2.772

Homework Set \#10

Due Friday Dec 9, 2005 by 3 pm

1. Small charged polymer beads are suspended in an aqueous salt solution. Estimate the distance two beads can approach each other (i.e. 2 X the Debye length κ) if the beads are suspended in: $0.01 \mathrm{M} \mathrm{NaCl}, 0.1 \mathrm{M} \mathrm{Nacl}$, $0.1 \mathrm{M} \mathrm{MgCl}_{2}$.
2. A weak acid is dissolved in water to give a concentration of 0.5 M . It is titrated with NaOH at 25 C to yield curve shown. What is the pK of this acid?

3.)A peptide has the following sequence:

Gly-Ile-His-Ile-Lys-Ala-His-Gly
Estimate the net charge on the peptide at $\mathrm{pH} 5, \mathrm{pH} 7.5$, and pH 10 at 25 C and at 40C. Sketch a titration curve showing the net charge on the peptide as a function of pH .

The dissociation constants for the side chains and termini are:

Amino acid	$\mathrm{pK}\left(25^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{H}^{0}(\mathrm{KJ} / \mathrm{mol}$ at 25 C$)$
Histidine $(\mathrm{RH}+\rightarrow \mathrm{R}+\mathrm{H}+)$	6.00	
Lysine $(\mathrm{RH}+\rightarrow \mathrm{R}+\mathrm{H}+)$	10.5	29.9
Carboxy terminus	~ 2.0	11.6
Amino terminus	~ 9.5	~ 3
An	~ 40	

You may find structures of the 20 amino acids in a biology or biochemistry text or at the following website: http://web.mit.edu/esgbio/www/lm/proteins/aa/aminoacids.html
4. Consider the 8 -mer oligonucleotide sequence 5^{\prime} '-CGAACATG- 3 ' mixed with its complement sequence 5^{\prime}-CATGTTCG-3'. Each oligomer is initially present at a concentration of $1 \times 10^{-6} \mathrm{M}$. A table of relevant data is attached as the last page of the exam.
a. Estimate the melting temperature, T_{m}, for the annealed oligomers. Hint: These are relatively short oligomers, so the temperatures are likely lower than you may expect for normal DNA melting temperatures.
b. At what temperature is the concentration of dimers 90% of the maximum possible?
c. In fact, half of the initial complementary sequence is degraded to the following two shorter oligomers: 5^{\prime}-CATG- 3^{\prime} and 5^{\prime} 'TTCG- 3^{\prime}. This creates a solution where the primary sequence is present at $1 \times 10^{-6} \mathrm{M}$, each of the degraded species is present at $0.5 \times 10^{-6} \mathrm{M}$, and the full length complementary sequence is present at $0.5 \times 10^{-6} \mathrm{M}$. For the degraded sequence show that the T_{m} for hybridization (with the original sequence) would not be observed under standard laboratory conditions.
d. Estimate the fraction of the 5^{\prime}-CATG- 3^{\prime} that is hybridized at $10^{\circ} \mathrm{C}$ in a solution containing only this oligomer and the full-length sequence 5^{\prime}-CGAACATG- 3^{\prime} both at $1 \times 10^{-6} \mathrm{M}$.
e. Explain why adding $0.5 \times 10^{-6} \mathrm{M}$ of the full length complement to the solution in (d) would effectively reduce the concentration of free 5^{\prime}-CGAACATG-3' by half.
f. Using the information you learned in parts c-e, estimate the observed T_{m} of the hybridized oligomer with the full-length complementary strand in the solution of part c , which contains the degraded species.

5.) Dill 26.8 Zimm-Bragg helix-coil theory for $N=4$ chain units.
(a)Write the Zimm -Bragg partition function Q_{4} in terms of σ and s for a four-unit chain, where $H H H H$ is the helical state.
(b)Write an expression for $f_{H}(s)$ for this transition.
6.) Dill 26.9 The Schellman helix-coil model.

A helix-coil model developed by J.A. Schellman is simpler than the Zimm-Bragg model, and works well for short chains. Consider a chain having N units.
(a)Write an expression for Ω_{k}, the number of configurations of a chain that has all its H units in a single helix k units long, as a function of N and k.
(b)If σ is the parameter for nucleating a helix, and s is the propagation parameter, write an expression for the partition function Q_{N} over all possible helix lengths k.
(c)Write an expression for $p k(N)$, the probability of finding a k-unit helix in the N-mer.
7.) Dill 28.2 Saturation of myglobin.

Suppose that O_{2} molecules bind to myoglobin with association constant $K=2$ torr $^{-1}$ at $25^{\circ} \mathrm{C}$ and pH 7.4 .
(a)Show a table of the fractional saturation of myoglobin for pressures of 1,2,4,8, and 16 torr O_{2}.
(b)Does the fractional saturation double for each doubling of the pressure?
8.)Dill 28.4 Three-site binding.

A ligand X can bind to a macromolecule P at three different binding sites with the binding constants K_{1}, K_{2}, and K_{3} :
$X+P \xrightarrow{K_{1}} P X$
$X+P X \xrightarrow{K_{2}} P X_{2}$
$X+P X_{2} \xrightarrow{K_{31}} P X_{3}$
a)Write the binding polynomial, Q.
b)Write an expression for the number of ligands v bound per P molecule.
c)Compute v for $x=[X]=0.05$, assuming $K_{1}=1, K_{2}=1$, and $K_{3}=1000$.
d)Assume the same K values as in (c). Below ligand concentration $x=x 0$ most of the macromolecular P molecules have 0 ligands bound. Above $x=x_{0}$ most of the P molecules have three ligands bound. Compute x_{0}.
e)For $x=x_{0}$ in part (d),show the relative populations of the ligation states with $0,1,2$, and 3 ligands bound.

