20.110/5.60/2.772 Fall 2005 Homework # 6 Due Friday October 28

1.) (Castellan) The standard entropy of lead at 25°C is $\overline{S}_{298}^{\circ}$ =64.80 J/K mol. The heat capacity of solid lead is $\overline{C}_{p}^{\circ}(s)/(J/K \text{ mol}) = 22.13 + 0.01172\text{T} + 0.96 \times 10^{5} \text{ T}^{-2}$ The melting point is 327.4°C and the heat of fusion is 4770 J/mol. The heat capacity of liquid lead is $\overline{C}_{P}(l)/(J/K \text{ mol})=32.51-0.00301\text{T}$.

a) Calculate the standard entropy of liquid lead at 500°C.

b) Calculate the Δ H in changing solid lead from 25°C to liquid lead at 500°C.

2.) (Castellan) a) What is the entropy change if one mole of water is warmed from 0°C to 100°C under constant pressure, \overline{C}_P =75.291 J/K mol.

b) the melting point is 0°C and the heat of fusion is 6.0095 kJ/mol. The boiling point is 100°C and the heat of vaporization is 40.6563 kJ/mol. Calculate ΔS for the transformation

ice (0°C, 1atm)→steam (100°C, 1atm)

3.) (Castellan) Dry ice has found its way into movies and spooky Halloween houses via fog machines. It has a vapor pressure of 1 atm at -72.2°C and 2 atm at -69.1°C. Calculate the Δ H of sublimation for dry ice.

4.) (Castellan) Napthalene, $C_{10}H_8$, melts at 80°C. If the vapor pressure of the liquid is 10 Torr at 85.8°C and 40 Torr at 119.3°, and that of the solid is 1 Torr at 52.6°C, calculate

a) the ΔH_{vap} of the liquid, the boiling point $T_b,$ and ΔS $_{vap}$ at T_b

b) the vapor pressure at the melting point.

c) Assuming that the melting-point and triple-point temperatures are the same, calculate ΔH_{sub} of the solid and ΔH_{fus} .

d) What must be the temperature if the vapor pressure of the solid is to be less than 10^{-5} Torr?

5.) (SAB 6.11) The sublimation pressures of solid Cl₂ are 352 Pa at -112° C and 35 Pa at -126.5° C. The vapor pressures of liquid Cl₂ are 1590 Pa at -100° C and 7830 Pa at -80° C. Calculate (a) $\Delta_{sub}H$, (b) $\Delta_{vap}H$, (c) $\Delta_{fus}H$, and (d) the triple point.

6.) (SAB 6.19) A binary liquid mixture of A and B is in equilibrium with its vapor at constant temperature and pressure. Prove that $\mu_A(g) = \mu_A(l)$ and $\mu_B(g) = \mu_B(l)$ by starting with G = G(g)

+ G(l) and the fact that dG = 0 when infinitesimal amounts of A and B are simultaneously transferred from the liquid to the vapor.

7.) (SAB 6.10) The heats of vaporization and of fusion of water are 2490 J g⁻¹ and 33.5 J g⁻¹ at 0°C. The vapor pressure of water at 0°C is 611 Pa. Calculate the sublimation pressure of ice at -15° C, assuming that the enthalpy changes are independent of temperature.

8.) (SAB 6.12) The vapor pressure of solid benzene, C_6H_6 is 299 Pa at -30°C and 3270 Pa at 0°C, and the vapor pressure of liquid C_6H_6 is 6170 Pa at 10°C and 15,800 Pa at 30°C. From these data, calculate (a) the triple point of C_6H_6 , and (b) the enthalpy of fusion of C_6H_6