20.110/5.60/2.772 Fall 2005

Homework \# 6

Due Friday October 28

1.) (Castellan) The standard entropy of lead at $25^{\circ} \mathrm{C}$ is $\bar{S}_{298}^{\circ}=64.80 \mathrm{~J} / \mathrm{K}$ mol. The heat capacity of solid lead is $\bar{C}_{p}^{\circ}(s) /(\mathrm{J} / \mathrm{K} \mathrm{mol})=22.13+0.01172 \mathrm{~T}+0.96 \times 10^{5} \mathrm{~T}^{-2}$ The melting point is $327.4^{\circ} \mathrm{C}$ and the heat of fusion is $4770 \mathrm{~J} / \mathrm{mol}$. The heat capacity of liquid lead is $\bar{C}_{P}(l) /(\mathrm{J} / \mathrm{K} \mathrm{mol})=32.51-$ 0.00301 T .
a) Calculate the standard entropy of liquid lead at $500^{\circ} \mathrm{C}$.
b) Calculate the $\Delta \mathrm{H}$ in changing solid lead from $25^{\circ} \mathrm{C}$ to liquid lead at $500^{\circ} \mathrm{C}$.
2.) (Castellan) a) What is the entropy change if one mole of water is warmed from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ under constant pressure, $\bar{C}_{P}=75.291 \mathrm{~J} / \mathrm{K} \mathrm{mol}$.
b) the melting point is $0^{\circ} \mathrm{C}$ and the heat of fusion is $6.0095 \mathrm{~kJ} / \mathrm{mol}$. The boiling point is $100^{\circ} \mathrm{C}$ and the heat of vaporization is $40.6563 \mathrm{~kJ} / \mathrm{mol}$. Calculate $\Delta \mathrm{S}$ for the transformation ice $\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \rightarrow$ steam $\left(100^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$
3.) (Castellan) Dry ice has found its way into movies and spooky Halloween houses via fog machines. It has a vapor pressure of 1 atm at $-72.2^{\circ} \mathrm{C}$ and 2 atm at $-69.1^{\circ} \mathrm{C}$. Calculate the $\Delta \mathrm{H}$ of sublimation for dry ice.
4.) (Castellan) Napthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$, melts at $80^{\circ} \mathrm{C}$. If the vapor pressure of the liquid is 10 Torr at $85.8^{\circ} \mathrm{C}$ and 40 Torr at 119.3°, and that of the solid is 1 Torr at $52.6^{\circ} \mathrm{C}$, calculate
a) the $\Delta \mathrm{H}_{\text {vap }}$ of the liquid, the boiling point T_{b}, and $\Delta \mathrm{S}_{\text {vap }}$ at T_{b}
b) the vapor pressure at the melting point.
c) Assuming that the melting-point and triple-point temperatures are the same, calculate $\Delta \mathrm{H}_{\text {sub }}$ of the solid and $\Delta \mathrm{H}$ fus.
d) What must be the temperature if the vapor pressure of the solid is to be less than 10^{-5} Torr?
5.) (SAB 6.11) The sublimation pressures of solid Cl_{2} are 352 Pa at $-112^{\circ} \mathrm{C}$ and 35 Pa at $-126.5^{\circ} \mathrm{C}$. The vapor pressures of liquid Cl_{2} are 1590 Pa at $-100^{\circ} \mathrm{C}$ and 7830 Pa at $-80^{\circ} \mathrm{C}$.
Calculate (a) $\Delta_{\text {sub }} H$, (b) $\Delta_{\text {vap }} H$, (c) $\Delta_{\text {fus }} H$, and (d) the triple point.
6.) (SAB 6.19) A binary liquid mixture of A and B is in equilibrium with its vapor at constant temperature and pressure. Prove that $\mu_{A}(g)=\mu_{A}(l)$ and $\mu_{B}(g)=\mu_{B}(l)$ by starting with $G=G(\mathrm{~g})$
$+G(1)$ and the fact that $\mathrm{d} G=0$ when infinitesimal amounts of A and B are simultaneously transferred from the liquid to the vapor.
7.) (SAB 6.10) The heats of vaporization and of fusion of water are $2490 \mathrm{Jg} \mathrm{g}^{-1}$ and $33.5 \mathrm{Jg}^{-1}$ at $0^{\circ} \mathrm{C}$. The vapor pressure of water at $0^{\circ} \mathrm{C}$ is 611 Pa . Calculate the sublimation pressure of ice at $15^{\circ} \mathrm{C}$, assuming that the enthalpy changes are independent of temperature.
8.) (SAB 6.12) The vapor pressure of solid benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ is 299 Pa at $-30^{\circ} \mathrm{C}$ and 3270 Pa at $0^{\circ} \mathrm{C}$, and the vapor pressure of liquid $\mathrm{C}_{6} \mathrm{H}_{6}$ is 6170 Pa at $10^{\circ} \mathrm{C}$ and $15,800 \mathrm{~Pa}$ at $30^{\circ} \mathrm{C}$. From these data, calculate (a) the triple point of $\mathrm{C}_{6} \mathrm{H}_{6}$, and (b) the enthalpy of fusion of $\mathrm{C}_{6} \mathrm{H}_{6}$

