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Questions:

* What distinguishes solid-phase viscoelasticity..
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* Does poroelasticity operate at cellular and

molecular scales as well as tissue scale??



http://ocw.mit.edu/help/faq-fair-use/

Cells Synthesize 100s of Extracellular Matrix Macromolecules
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H,k = f(pH, lonic strength)
[PSet 4, Prob 1]
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The Amino-acid Compositioﬁ and Titration Curve of Collagen

By JOANE H. BOWES axp R. H. KENTEN Biochem J

The British Leather Manufacturers’ Research Association, London, S.E. 1
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Fig. 2. Titration curves of collagen with and without sodium chloride.
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Swelling (“H”) & Fluid Flow (“k”) in
"Bio-Porous Media”: Molecular Networks & Gels

Polyelectrolyte Gels Swell: Network resists

Electrostatic Forces (“H”) fluid flow (“k”)
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Problem 7.11 and Figure 7.34 removed due to copyright restrictions. See the problem in the textbook.
Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011.
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(Connective Tiss. Res, 1979)

THE INFLUENCE OF MECHANICAL FORCES ON THE
GLYCOSAMINOGLYCAN CONTENT OF THE RABBIT
FLEXOR DIGITORUM PROFUNDUS TENDON

GERALD C. GILLARD, HELEN C. REILLY, UL G. BELL-BOOTH
and| MICHAEL H. FLINT

Department of Surgery, School of Medicine, University o
Private Bag, Auckland 1, New Zealand

@ The physical forces acting on the flexor digitorum profundus tendon of the rabbit were altered b amcriur

translocation of the tendon. The glycosaminoglycan (GAG) content was determined in regions of the tendon
previously under tension or previously subjected to pressure.

The original pressure bearing region showed a rapid loss of total GAG. This was mainly due to a loss of
chondroitin_sulfate component, and eventually the region showed a GAG composition similar to that of
normal tension transmitting tendon. Replacement of the translocated tendon to its normal position resulted in
a slow replacement of the GAG, particularly chondroitin sulfate

n

- - ——  Later when tension was restored to the translocated ten-
don, th; content of .these two GAG decreased to normal values while the high overall GAG concentration
was maintained by increased amounts of dermatan sulfate.

Chondfoitin sulfate =
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Dermatan sulfate = decorin
(“SLRPs”)
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PROTEOGLYCAN SUPERFAMILY

« ECM molecules with (1) Core protein, and
(2) Glycosaminoglycan (GAG) chains

« “Sub-families” of extracellular PGs:

» Large Aggregating (Aggrecan)

« Small Leucine-Rich PG (SLRPs)

imrlﬂtltltitltitltiﬂr (Decorin)
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Courtesy of The Journal of Biological Chemistry. Used with permission.

Source: Iozzo, Renato V. "[I'he Biology of the Small Leucine-rich Proteoglycans
|Functiona| Network of Interactive Proteins." -RXUQD0 RI %LRIRJLFD0 &KHPLVW\ 274,
no. 27 (1999): 18843-6.
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S m a I I -Le u CI n e -RI c h Figure 4 Ultrastructural appearance of dermal collagen from the skin of decorin null (4 and B)

and wild-type (C) mice. Notice the larger and irregular cross-sectional profiles in the decorin null

P rOteog cha n S collagen fibers (asrerisks) with evidence of lateral fusion (4, arrowheads). Bar: 90 nm.
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Dynamic Torsional Shear

(Static Offset Compression)
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Source: Jin, Moonsoo, and Alan J. Grodzinsky. "Effect of Electrostatic Interactions between
[Glycosaminoglycans on the Shear Stiffness of Cartilage: A Molecular Model and Experiments."
Macromolecules 34, no. 23 (2001): 8330-39.
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“Dynamic Torsional Shear”

Apply sinusoidal shear strain (0.8% amplitude at 0.5 Hz)
and measure sinusoidal stress amplitude & phase
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Source: Jin, Moonsoo, and Alan J. Grodzinsky. "Effect of Electrostatic Interactions between
[Glycosaminoglycans on the Shear Stiffness of Cartilage: A Molecular Model and Experiments."
Macromolecules 34, no. 23 (2001): 8330-39.

Is Phase Delay due to
Viscoelastic -OR- Poroelastic behavior?
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Non-zero phase angle — Viscoelastic? Poroelastic? both??

Dynamic Behavior in Pure Shear
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Source: Jin, Moonsoo, and Alan J. Grodzinsky. "Effect of Electrostatic Interactions between
[Glycosaminoglycans on the Shear Stiffness of Cartilage: A Molecular Model and Experiments."
Macromolecules 34, no. 23 (2001): 8330-39.
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Non-zero phase angle — Isolates Viscoelasticity of ECM
(or gel, or molecular network)!!!

Dynamic Behavior in Pure Shear
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Courtesy of the authors. Used with permission.
Source: Malda, Jos, et al. "lOf Mice, Men and Elephants: The Relation between
[Articular Cartilage Thickness and Body Mass." 30R6 RQH 8, no. 2 (2013): e57683.

"Safranin-O" (red) stains Glycosaminoglycans
(of Proteoglycans)
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Ti L IN h . Hadi Tavakoli Nia,
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Courtesy of Elsevier, Inc., pttp://www.sciencedirect.com. Used with permission.
Source: Nia, Hadi Tavakoli, et al. "Poroelasticity of Cartilage at the Nanoscale."
Biophysical Journal 101, no. 9 (2011): 2304-13.
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Source: Nia, Hadi Tavakoli, et al. "High—bandwidth AFM-based Rheology Reveals

that Cartilage is Most Sensitive to High Loading Rates at Early Stages of Impairment."”
Biophysical Journal 104, no. 7 (2013): 1529-37.
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Tissue-Level Nanomechanics: dominated by

poroelasticity
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Problem removed due to copyright restrictions. See the problem in the textbook.
Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011.

22



Is this tissue Poroelastic ??

Dynamic Modulus
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