LU | LRSI # Cardiovascular Tissues

I Musculos al Tissues

Courtesy of Ernst B. Hunziker. Used with permission. © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see|http://ocw.mit.edu/help/faq—fair—use/.



http://ocw.mit.edu/help/faq-fair-use/

(Nature, 2005)

Non-equilibration of hydrostatic pressure in
blebbing cells

Guillaume T. Charras', Justin C. Yarrow', Mike A. Horton?, L. Mahadevan'”>* & T. J. Mitchison'
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(Text: P 7.13)

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Charras, Guillaume T., et al. "Non-equilibration of Hydrostatic
Pressure in Blebbing Cells." Nature 435, no. 7040 (2005): 365-9.
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Charras, Guillaume T., et al. "Non-equilibration of Hydrostatic
Pressure in Blebbing Cells." Nature 435, no. 7040 (2005): 365-9.

Current models of the cytoplasm cannot account for spatio-
temporal variations in hydrostatic pressure. We propose a new
description of the cytoplasm based on poroelasticity. \We
consider cytoplasm to be composed of a porous, actively
contractile, elastic network (cytoskeletal filaments, organelles,
ribosomes), infiltrated with an interstitial fluid (...water, ions, soluble
proteins), similar to a fluid-filled sponge. Contraction of the
acto-myosin cortex creates a compressive stress on the
cytoskeletal network, leading to localized increase in hydrostatic
pressure & ... cytosol flow out of the network.....


http://dx.doi.org/10.1038/nature03550
http://dx.doi.org/10.1038/nature03550
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Slow Stress Propagation in Adherent Cells
Biophysical J, 2008

Michael J. Rosenbluth,*" Ailey Crow,** Joshua W. Shaevitz,® and Daniel A. Fletcher*!*

‘Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720; "University of California at San
Francisco/University of California at Berkeley Joint Graduate Group in Bioenaineerina. Berkeley. California 94720; *Biophvsics

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Rosenbluth, Michael J., et al. "ISIow Stress Propagation in Adherent Cells."
Biophysical Journal 95, no. 12 (2008): 6052-059.

ABSTRACT: Mechanical cues influence...motility, differentiation,

tumorigenesis.... study of how mechanical perturbations propagate across
the cell is necessary to understand spatial coordination of cellular processes.

* Here we quantify magnitude & timing of intracellular stress propagation,
using AFM and particle tracking by defocused fluorescence microscopy.

* The apical cell surface is locally perturbed by AFM cantilever indentation,
and distal displacements are measured in 3 dimensions by tracking
integrin-bound fluorescent particles.


http://dx.doi.org/10.1529/biophysj.108.139139
http://www.sciencedirect.com
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We observe an immediate response and slower
equilibration, occurring over relaxation times that
increase with distance from perturbation.
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DISCUSSION

We compared our results to two matenial models: visco- -
elasticity and poroelasticity. A single-phase homogeneous
viscoelastic material, such as the traditional spring-and-dashpot
standard linear solid model, cannot cxplain_ the observed be- L
havior, because it assumes that the material will simultaneously
relax in response to a local perturbation with a single time-
constant. To determine if a heterogeneous viscoelastic model -
could explain this behavior, we modeled the experiment as a
step-strain of a series of parallel spring-dashpot pairs { Voigt-

Kelvin material (29,30) de

dT
T+QE=E18+JSE" -----

M Em

Mo, €7

My, €

The poroelastic model can account for the observed slow =

distanc::-dcpcndcnt equilibration |across the cell. The bi-

phasic nature of a poroelastic material results in both a fast
propagation of stress through the solid phase (cytoskeleton),
and a much slower diffusive equilibration of hydrostatic
pressure of the fluid phase (cytosol), resulting in increasing =
equilibration time with distance (20). = © source unknown. All rights reserved. This content is

excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq—fair—use/.
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Courtesy of Elsevier, Inc., |http://www.sciencedirect.com. Used with permission.
Source: Rosenbluth, Michael J., et al. "ISIow Stress Propagation in Adherent Cells."
Biophysical Journal 95, no. 12 (2008): 6052-059.

* Our experimental results are not explained by
traditional viscoelastic models of cell mechanics,
but they are consistent with predictions from
poroelastic models that include both cytoskeletal
deformation and flow of the cytoplasm....


http://dx.doi.org/10.1529/biophysj.108.139139
http://www.sciencedirect.com
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Courtesy of Blausen.com staff. License: CC BY.
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Image of knee anatomy removed due to copyright restrictions.



The role of viscoelasticity of collagen fibers 1n articular cartilage:

axial tension versus compression

L.P. Li**, W. Herzog?, R.K. Korhonen®, I.S. Jurvelin"™® (Med Eng & Physics, 2005)
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Abstract: ..... For axial tension, collagen viscoelasticity was found to
account for most of the stress relaxation, while the effects of fluid
pressurization on the tensile stress were negligible. In contrast, for axial
compression, the dominant mechanism for stress relaxation arose from
fluid pressurization and fluid flow.......

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Li, L. P., et al. "The Role of Viscoelasticity of Collagen Fibers in Articular

|Carti|age: Axial Tension Versus Compression." Medical Engineering & Physics 27,
no. 1 (2005): 51-57.
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Kinetics of swelling of gels @ oo

Toyoichi Tanaka and David J. Fillmore

(J Chem Phys, 1979)

Gel displacement u satisfies

a poroelastic

diffusion equation!

au a1 /a
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(see Section 7.5 of text, page 260-261)

radius_~
1 b _

0 T I SR IR T I T
0 002 004 006 008 010

a’ (cmg)

© American Institute of Physics. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/.
Source: Tanaka, Toyoichi, and David J. Fillmore. "Kinetics of Swelling of Gels." The Journal of

Chemical Physics 70, no. 3 (1979): 1214-8.
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Problem 7.10 removed due to copyright restrictions. See the [problem in the textbook.
Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011.
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Problem 7.10 removed due to copyright restrictions. See the [problem in the textbook.
Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011.
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Theory of Eiastici d Consolidation for a Porous Anisotropic Solid
)

M. A. Bror®
Shell Development Company, New Vork City, New ¥ork

{Received May 35, 1954)
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The author’s previous theory of elasticity and consolidation for isotropic materials [J. Appl. Phys. 12

155-164 (1941)] is exrended to the general case of anisotropy. The method of derivation is alsn diﬁereni) *

and more direct. The particuldr cases of transverse isotropy and complete isotropy are discussed.

1. INTRODUCTION

THE theory of consolidation deals with the settle-
ment under loading of a perous deformable solid
containing a viscous fluid. In a previous publication*
a consolidation theory was developed for isotropic
materials. The purpose of the present paper is to extend
the theory to the niost general case of anisotropy. The
method by which the theory is derived is also more
general and direct. The same physical assumption is
introduced, that the skeleton is purely elastic and con-

tains a_compressible viscous fluid. The theory may

——— - - - &
therefore also be considered as a generalization of the
theory of elasticity to porous matcrials. It is applicable

OB b oAy

to the peertletion of tite thro Mielouno B SERes ot BRBate
in a porous soid in which siuid seepage sccurs. The
general equations derived in Sec. 2 are applied to the
case of transverse isotropy in Sec. 3. This is a case of
particular interest in the apniication of the theory to
soils and natural rock formations, since transverse izo-
tropic is the type of symmetry usually acquired by
rock under the induence of graviry. For an isotrepic
material the equations reduce to a simple form giver
in Sec. 4. They are showr to coincide with the equa-
tions derived in reference 1. Application of the theory
to specific cases was made previously,>™ and it was

sample of bulk volume V3. It is understood that the
term “porosity” refers as is customary to the efective
porosity, namely, that encompassing only the inter-
communicating void spaces as opposed to those pores
which are sealed off. In the following, the word “pore”
will refer to the effective pores while the sealed pores
will be considered as part of the solid. It will be noted
that a property of the porosity f is that it represents
also a ratio of areas

J=55/Sw, 2.3

i.e., the fraction S, occupied by the pores in any cross-
sectional area Sy of the bulk material. It must be-
assumed. of course. that the pores are randomly -
“ihate. i locatden but not pegs.satiy oLt

L

That this relation heids may be ascertzinsd by -
tegrating S,;/Ss over a length of unity in 2 direction
normal to the cross section Ss. The value of this integral
then re~rezents the fraction f of the v»inme pone-iad
by the pores. It is seen that the ratio S,/ 3y is also 1de-
pendent of the direction of the cross section.

The stress tensor in the Borous material is

Tzzt+0 Tzy Trz
Oyz  Opto Oy (2.3
Ozz Ty Terto.

© American Institute of Physics. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Source: Biot, M. Av. "[Theory of Elasticity and Consolidation for a Porous Anisotropic Solid."
Journal of Applied Physics 26, no. 2 (1955): 182-5.
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Problem 7.3 and Figure 7.25 removed due to copyright restrictions. See the problem in the textbook.
Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011.
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