20.320, notes for 10/2

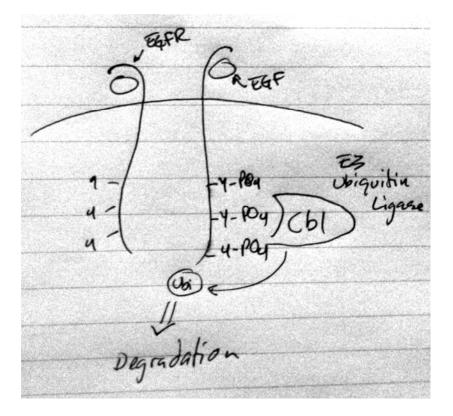
Tuesday, October 02, 2012 9:37 AM

Roadmap

Cue --> Signals --> Responses

We talked about signals the last 2 classes. We'll talk about cues for the following two, and about responses (transcriptional, mostly) during the last 2 classes in this module.

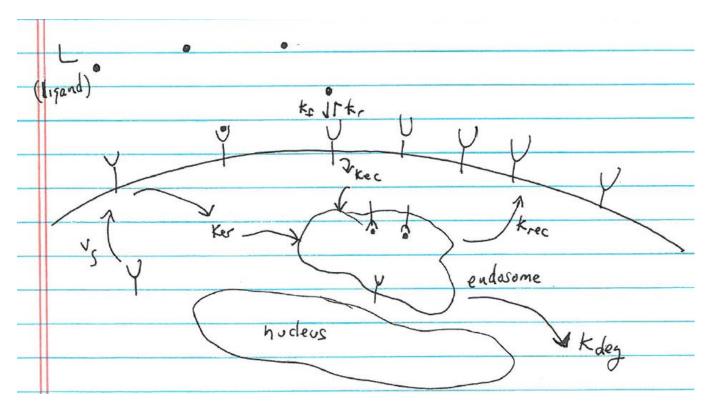
Signal shut-down


Aberrant receptor activation leads to oncogenesis and tumor progression. How does the cell prevent this from happening? There's a few ways.

- Feedback inhibition

 a. Example: Erk ----| EGFR
- 2. Receptors are endocytosed and degraded.
 - a. This happens to both activated and non-activated receptors.
 - b. This endocytosis is part of the procedure by which the cell samples the medium around it. The stuff that gets drawn in is degraded to peptides, yes, but also eventually presented to the immune system through MUC class I/class II surface presentation (where peptides are exposed on the surface for the immune system to know what the cell has been exposed to).

Deactivation of activated receptors


You have the phosphorylated EGFR. Its phosphorylated tyrosines are recognized by Cbl, a ubiquitin ligase that slaps ubiquitin tags on the whole EGFR and marks it for degradation. Remove the tyrosines, and you don't have Cbl recognition anymore. This happens in a lot of cancers.

Modeling signal shut-down

We will now try to model this process of down-regulating signals. We'll start with a simple case and then add complexity as needed. How does the context/environment affect the # of cell surface receptors? Let's build a model.

We start with a cell membrane, receptors, and a rate of receptor synthesis. This is all we need for the first iteration.

Nomenclature

L	Ligand
Rs	Receptors on surface
Vs	Rate of synthesis
K _{deg}	Rate of degradation
Ri	Receptors internal
Ci	Complexes internal
Cs	Complexes on surface
K _{er}	Rate of receptor endocytosis
R _T	Total receptors

Note that Kec > Ker

Assumptions of our model

- 1. Complexes in the endosome do not unbind
 - a. Note that the endosome pH is about 5.5, very different from the rest of the cell. We can expand the model to include this un-binding.

- 2. Internalized complexes recycle at the same rate as receptors
 - a. This is probably a bad assumption
- 3. Ligand is only internalized when it's in complex.

If the rate of receptor production is constant, is the number of receptors also constant? Is this a good approximation?

We're modeling transcription and translation as constants, but in fact they are regulated by receptor activation pathways. We'll ignore that for now.

Given this model, we can now ask questions like "How many receptors are there at the surface in the absence of ligand?".

• How many huppors on surface in absence of ligand? dRs = Vs - KerRs + Kree F. - KELIRs + KILSI des = Kell Rs - Kics - Keels + Kreeli dR. ar = KuRs - Krack: - Kaug R: dc: = KacG - Krack: - Kaug C. Tr = KacG - Krack: - Kaug C. Absence of ligand L:0, G=0, G=0 also - KerRs - No recycling dR: = Ker Rs - Kdeg Ri At sueady State des = de = p Rso = Ker Rio = Key Psi = RTD = RSo + Pin = Vs (Ker + Fag) Rise = (1 + Ker) - Fraction of ricepton on Surface Rise = (1 + Kerg) - Orto, absence of ligand

Plug in representative $\pm i_s$ $K_{er} = 2 \times 10^{-2} \text{ mm}^{-1} \text{ kdeg} = 1 \times 10^{-2} \text{ mm}^{-1} \text{ V}_s = 100 \text{ mm}^{-1} \text{ cell}^{-1}$ $= 7 R_{so} = 5 \times 10^3 \text{ copies/cell}$ Rio = 1×104 copies/cell Rso/R:1 = 0.3 - What does this tell us? -In the absence of ligand, only '13 of keeptor is on the surface. Not available for binding ligand, less sensituity to signal.

But how do we measure the amount of surface receptors? We could do FACS with anti-EGFR antibodies tagged with fluorophores. This is great, and measures just the surface receptors. Most people for a long time just did Western blots, which are misleading because (unless you're isolating the membrane0 you're measuring total receptors from the whole cell.

What happens to R_s, R_T when we add ligand? We can make a few different assumptions

- 1. Assumption: Kdeg >> ker, krec.
 - a. When receptors or complexes are internalized, they are immediately degraded.

What happens to ks, ky when we add ligand 1. Kaug >> Ker, Knc => When rappors or complexes are internalized, muy are immediately degraded Initial conditions, @ To = 0 L=0 2. dRs = VS - KerRs dRs = 0 OSteady dt = VS - KerRs dt = 0 OSteady drs. VI Rso = RT. - Starting Olt - Ker Rso = RT. - Starting

Thus, our starting condition is that $R_{so} = R_{To}$. We can further assume that $[L]_o >> R_s$, so that there will be minimal ligand depletion. We will also assume that ligand binding and complex formation happens much faster than internalization. Thus, it is at equilibrium.

* Look at Steady State after ligand binding $\frac{d(R_{s}+C_{s})}{d(R_{s}+C_{s})}=0$ Vs-Ker Rs-KecCr=0 # - [[omplexes to # receptors rs Cs = EN. Ps Reta 140 + Kecli + Cs GAL from starting R. Conce Ker + Kec 270 Key

What can we learn from this equation?

What controls the amount of receptor that's there after you add ligand? The dominating term is k_{ec}/k_{er} .

This controls the amount of receptor that's there after ligand is added. If kec > ker, as we'd assumed earlier, then $R_T < R_{To}$.

And thus, the cell's response level depends on how long it's been since it started signaling. Same ligand

has less effect later on. This protects the cell from ongoing, aberrant signaling.

How do you regulate the system?

- 1. Increase kec
- 2. Increase ker
 - a. This is counterintuitive. Doesn't that move our crucial control term the wrong way? Because it controls the total receptor concentration. Remember that

$$R_{To} = \frac{V_s}{k_{er}}$$

And so increasing ker will result in fewer receptors that can be activated at all. This is a really clever approach. People have taken multiple anti-EGFR antibodies and used them to trigger greater endocytosis without added signaling. By using at least two different kinds of antibodies, you can basically cross-link bunches of receptors together and trigger endocytosis. Dane Wittrup showed that messing with krec and ker has similar effects. In other words, you can either increase internalization or block recycling.

20.320 Analysis of Biomolecular and Cellular Systems Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.