20.330J Fields, Forces and Flows in Biological Systems

Prof. Scott Manalis
Review: Vector Calculus

Vector Product

$$
\begin{aligned}
\vec{v} \cdot \hat{n} & =v_{x} n_{x}+v_{y} n_{y}+v_{z} n_{z} \\
& =|\vec{v} \| \hat{n}| \cos (\alpha)
\end{aligned}
$$

Gradient (on a scalar function)

$$
\stackrel{\rightharpoonup}{\nabla}=\hat{i}_{x} \frac{\partial}{\partial x}+\hat{i}_{y} \frac{\partial}{\partial y}+\hat{i}_{z} \frac{\partial}{\partial z}
$$

$$
\vec{\nabla} p=\hat{i}_{x} \frac{\partial p}{\partial x}+\hat{i}_{y} \frac{\partial p}{\partial y}+\hat{i}_{z} \frac{\partial p}{\partial z}
$$

Divergence (operated on vector)

$$
\vec{\nabla} \cdot \vec{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z} \quad=>\text { scalar }
$$

Curl (operated on vector)

$$
\bar{\nabla} \times \vec{v}=\left|\begin{array}{ccc}
\hat{i}_{x} & \hat{i}_{y} & \hat{i}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right| \quad \Rightarrow>\text { vector }
$$

In 1D integration...

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} \frac{\partial f}{\partial x} d x
$$

...similarly, we have two different integral theorems for vector calculus.
(1) Gauss' theorem (Divergence theorem)

For any vector field \hat{v},

Proof: consider infinitesimal cube.

From surfaces (1) and (2):

$$
\oint_{s}(\stackrel{\rightharpoonup}{v} \cdot \hat{n}) d a \rightarrow\left(\left.V_{x}\right|_{x+\Delta x}-\left.V_{x}\right|_{x}\right) \Delta y \Delta z
$$

Similarly, from other surfaces,

$$
\begin{aligned}
\oint_{s}(\stackrel{\rightharpoonup}{v} \cdot \hat{n}) d a= & \left(\left.V_{x}\right|_{x+\Delta x}-\left.V_{x}\right|_{x}\right) \Delta y \Delta z \\
& +\left(\left.V_{y}\right|_{y+\Delta y}-\left.V_{y}\right|_{y}\right) \Delta x \Delta z \\
& +\left(\left.V_{z}\right|_{z+\Delta z}-\left.V_{z}\right|_{z}\right) \Delta x \Delta y
\end{aligned}
$$

Divide each terms with $\Delta x, \Delta y, \Delta z$ respectively,

$$
\begin{aligned}
& =\left\lfloor\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}\right\rfloor \Delta x \Delta y \Delta z \\
& =\oint_{V}(\nabla \cdot \vec{V}) d V
\end{aligned}
$$

Meaning of " $\nabla \cdot \vec{V}$ "

- volume expansion
- net outgoing flux
- for incompressible flow, $\nabla \cdot \vec{V}=0$ (no fluid source/sink)

$\nabla \cdot \vec{V}=0$
"divergence" free

$\nabla \cdot \vec{V}>0$

$\nabla \cdot \vec{V}<0$

(2) Stokes' theorem (curl theorem)

For a given vector field \hat{v},

Proof: think about the rectangle in the xy plane.

Similar for curves in other planes...

Meaning of " $\nabla \times \vec{V}$ "

- Represents "circulation" of the flow.

$\nabla \times \vec{V}=0$
Laminar flow

$\nabla \times \vec{V} \neq 0$
Turbulent flow

References

- H\&M website: Chapter 2
- Appendix of TY \& K

