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Francis Bacon (1561-1628)1: 

“I found that I was fitted for nothing so well as the study of 
Truth; as having a nimble mind and versatile enough to 
catch the resemblance of things (which is the chief point), 
and at the same time steady enough to fix and distinguish 
their subtle differences...” 

“Think things, not words.” 

Albert Einstein (1879-1955)2: 

“… all knowledge starts from experience and ends in it. 
Propositions arrived at by purely logical means are 
completely empty as regards reality." 

Percy W. Bridgman (1882-1961)3: 

“...what a man means by a term is to be found by observing 
what he does with it, not by what he says about it.” 

1 Catherine Drinker Bowen, 1963 
2 Einstein, 1933 
3 Bridgman, 1950 
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1. Introduction

Dimensional analysis offers a method for reducing complex physical 
problems to the simplest (that is, most economical) form prior to obtaining 
a quantitative answer. Bridgman (1969) explains it thus: "The principal 
use of dimensional analysis is to deduce from a study of the dimensions of 
the variables in any physical system certain limitations on the form of any 
possible relationship between those variables. The method is of great 
generality and mathematical simplicity". 

At the heart of dimensional analysis is the concept of similarity. In 
physical terms, similarity refers to some equivalence between two things 
or phenomena that are actually different. For example, under some very 
particular conditions there is a direct relationship between the forces 
acting on a full-size aircraft and those on a small-scale model of it. The 
question is, what are those conditions, and what is the relationship 
between the forces? Mathematically, similarity refers to a transformation 
of variables that leads to a reduction in the number of independent 
variables that specify the problem. Here the question is, what kind of 
transformation works? Dimensional analysis addresses both these 
questions. Its main utility derives from its ability to contract, or make 
more succinct, the functional form of physical relationships. A problem 
that at first looks formidable may sometimes be solved with little effort 
after dimensional analysis. 

In problems so well understood that one can write down in 
mathematical form all the governing laws and boundary conditions, and 
only the solution is lacking, similarity can also be inferred by normalizing 
all the equations and boundary conditions in terms of quantities that 
specify the problem and identifying the dimensionless groups that appear 
in the resulting dimensionless equations. This is an inspectional form of 
similarity analysis. Since inspectional analysis can take advantage of the 
problem's full mathematical specification, it may reveal a higher degree of 
similarity than a “blind” (less informed) dimensional analysis and in that 
sense prove more powerful. Dimensional analysis is, however, the only 
option in problems where the equations and boundary conditions are not 
completely articulated, and always useful because it is simple to apply and 
quick to give insight. 

Some of the basic ideas of similarity and dimensional analysis had 
already surfaced in Fourier's work in the nineteenth century's first quarter, 
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but the subject received more methodical attention only toward the close 
of that century, notably in the works of Lord Rayleigh, Reynolds, 
Maxwell, and Froude in England, and Carvallo, Vaschy and a number of 
other scientists and engineers in France (Macagno, 1971)4. By the 1920's 
the principles were essentially in place: Buckingham's now ubiquitous 
π−theorem had appeared (Buckingham, 1914), and Bridgman had 
published the monograph which still remains the classic in the field 
(Bridgman, 1922, 1931). Since then, the literature has grown prodigiously. 
Applications now include aerodynamics, hydraulics, ship design, 
propulsion, heat and mass transfer, combustion, mechanics of elastic and 
plastic structures, fluid-structure interactions, electromagnetic theory, 
radiation, astrophysics, underwater and underground explosions, nuclear 
blasts, impact dynamics, and chemical reactions and processing (see for 
example Sedov, 1959, Baker et al, 1973, Kurth, 1972, Lokarnik, 1991), 
and also biology (McMahon & Bonner, 1983) and even economics (de 
Jong, 1967). 

Most applications of dimensional analysis are not in question, no 
doubt because they are well supported by experimental facts. The debate 
over the method's theoretical-philosophical underpinnings, on the other 
hand, has never quite stopped festering (e.g. Palacios, 1964). 
Mathematicians tend to find in the basic arguments a lack of rigor and are 
tempted to redefine the subject in their own terms (e.g. Brand, 1957), 
while physicists and engineers often find themselves uncertain about the 
physical meanings of the words in terms of which the analysis cast. The 
problem is that dimensional analysis is based on ideas that originate at 
such a substratal point in science that most scientists and engineers have 
lost touch with them. To understand its principles, we must return to some 
of the very fundamental concepts in science. 

Dimensional analysis is rooted in the nature of the artifices we 
construct in order to describe the physical world and explain its 
functioning in quantitative terms. Einstein (1933) has said, "Pure logical 
thinking cannot yield us any knowledge of the empirical world; all 
knowledge starts from experience and ends in it. Propositions arrived at by 
purely logical means are completely empty as regards reality." 

4 See, for example, the very first page of the first volume of James Clerk Maxwell’s A 
treatise on Electricity and Magnetism (third edition, Clarendon Press, Cambridge, 1891; 
republished by Dover, New York, 1954) 
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This treatise is an attempt to explain dimensional analysis by tracing it 
back to its physical foundations. We will clarify the terms used in 
dimensional analysis, explain why and how it works, remark on its utility, 
and discuss some of the difficulties and questions that typically arise in its 
application. One single (unremarkable) application in mechanics will be 
used to illustrate the procedure and its pitfalls. The procedure is the same 
in all applications, a great variety of which may be found in the references 
and in the scientific literature at large. 
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2. Physical Quantities and Equations

2.1 Physical properties

Science begins with the observation and precise description of things and 
events. It is at this very first step that we face the fact upon which 
dimensional analysis rests: Description in absolute terms is impossible. 
We can do no more than compare one thing with another, to "catch the 
resemblance of things". When we say that something "is" a tree, we mean 
simply that it has a set of attributes that are in some way shared by certain 
familiar objects we have agreed to call trees. 

Our brains have evolved to the point where we can recognize trees 
almost instantly, but describing something like a tree is actually a very 
complex business. Physics starts by breaking the descriptive process down 
into simpler terms. An object or event is described in terms of basic 
properties like length, mass, color, shape, speed, and time. None of these 
properties can be defined in absolute terms, but only by reference to 
something else: an object has the length of a meter stick, we say, the color 
of an orange, the weight of a certain familiar lump of material, or the 
shape of a sphere. The references may be made more precise, but in 
essence "description" is simply a noting of the similarities between one 
thing and a set of others that are known to us. We can do no more than 
compare one thing with another. 

A physical property first arises as a concept based on experience, and 
is formalized by defining a comparison operation for determining whether 
two samples of it are equal (A=B) or unequal (A B). (We shall use bold 
symbols when we are referring not to numerical values, but to actual 
physical attributes.) This operation, which is an entirely physical 
procedure, defines the property. Properties of the same kind (or simply, the 
same properties) are compared by means of the same comparison 
operation. Properties of different kinds cannot be compared because there 
exists no operation that defines equality. Asking whether a particular mass 
is physically equal to a particular length is meaningless: no procedure 
exists for making the comparison. 

If a property is defined only in terms of a comparison operation, we 
have a procedure for establishing whether two samples of it are equal or 
unequal, but no concept of what it means for one to be larger or smaller 
than the other. Shape and color are examples. We have procedures for 
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determining if two objects have the same shape, or the same color. But 
asking whether a square shape is smaller or larger than a circular shape, or 
whether green is smaller or larger than white, makes no sense. Properties 
like shape and color are useful for describing things, but cannot play a role 
in any quantitative analysis, which deals with relative magnitudes. 

2.2 Physical quantities and base quantities

Science begins with observation and description, but its ultimate goal is to 
infer from those observations laws that express the phenomena of the 
physical world in the simplest and most general (that is, most economical) 
terms. That the language of mathematics is ideally suited for expressing 
those laws is not accidental, but follows from the constraints we put on the 
types of physical properties that are allowed to appear in quantitative 
analysis. The allowed types of properties are called "physical quantities". 

Physical quantities are of two types: base quantities and derived 
quantities. The base quantities, which are defined in entirely physical 
terms, form a complete set of basic building blocks for an open-ended 
system of “derived” quantities that may be introduced as necessary. The 
base and derived quantities together provide a rational basis for describing 
and analyzing the physical world in quantitative terms. 

A base quantity is defined by specifying two physical operations: 

a comparison operation for determining whether two samples A 
and B of the property are equal (A=B) or unequal (A B), and 

an addition operation that defines what is meant by the sum 
C=A+B of two samples of the property. 

Base quantities with the same comparison and addition operations are of 
the same kind (that is, different examples of the same quantity). The 
addition operation A+B defines a physical quantity C of the same kind as 
the quantities being added. Quantities with different comparison and 
addition operations cannot be compared or added; no procedures exist for 
executing such operations. All physical quantities are properties of 
physical things or events. They are not themselves physical things or 
events. The comparison and addition operations involve physical 
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manipulations of objects or events that possess the property under 
consideration (see the examples below). 

The comparison and addition operations are physical, but they are 
required to have certain properties that mimic those of the corresponding 
mathematical operations for pure numbers: 

A=B and 
B=C, then A=C), and 

A+B=B+A), associative 
[A+(B+C)=(A+B)+C], and unique (if A+B=C, there exists no finite 
D such that A+B+D=C). 

The two operations together define, in entirely physical terms, 

finite B such that A+B=C, then C>A), 
(2) subtraction of like quantities (if A+B=C, then A C-B), 

pure number (if B=A+A+A, 
then B 3A), and 

pure number (if A=B+B+B, then 
B A/3). 

A base quantity is thus a property for which the following mathematical 
operations are defined in physical terms: comparison, addition, 
subtraction, multiplication by a pure number, and division by a pure 
number. Each of these operations is performed on physical properties of 
the same kind and yields a physical property of that kind, and each 
physical operation obeys the same rules as the corresponding 
mathematical operation for pure numbers. 

This sets the stage for not only "catching the resemblance of things", 
but also expressing that resemblance in the language of mathematics. 

It is important to note that mathematical operations other than the ones 
listed above are not defined in physical terms. No defining operation exists 
for forming a tangible entity that represents the product of a mass and a 
time, for example, or, for that matter, the product of one length and 
another (more on this later). Nor can we point to some tangible thing that 
"is" the cube root of a length, say, or the natural logarithm of a time. 
Products, ratios, powers, and exponential and other functions such as 

(1) The comparison operation must obey the identity law (if 

(2) the addition operation must be commutative (

(1) the concept of larger and smaller for like quantities (if there exists a 

(3) multiplication of a physical quantity by a 

(4) division of a physical quantity by a 
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trigonometric functions and logarithms are defined for numbers, but have 
no physical correspondence in operations involving actual physical 
quantities. 

Figure 2.1 illustrates the comparison and addition operations of some 
well-known physical quantities that can be chosen as base quantities. The 
figure shows them in simplistic, cartoon-like terms, but we are of course 
aware that each operation is actually associated with a carefully articulated 
procedure and a set of concepts that are often quite complex. For our 
present purpose we take these for granted, much like Dr. Samuel Johnson 
who, when queried about how he knew that the physical world really 
existed, satisfied himself by stamping his foot on the pavement. 

Figure 2.1a: The comparison and addition operations of length. 

Figure 2.1b: The comparison and addition operations of mass. 



13


Figure 2.1c: The comparison and addition operations of area. 

Figure 2.1d: The comparison and addition operations of velocity. 

Figure 2.1e: The comparison and addition operations of force. 

The comparison and addition operations for length and mass are 
familiar. Only one comment is necessary: the mass referred to in the figure 
is the "gravitational mass”, for which equality is defined by the statement 
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that two masses are equal if a third mass exerts the same gravitational 
force on each of them separately at the same relative position. 

Time is omitted from the figure, largely because its defining 
operations defy illustration in such simplistic terms. The concept of time is 
deeply rooted in our biological beings. It is, after all, the warp of our 
existence, the stuff, as some wit pointed out, that keeps everything from 
happening at once. Time characterizes an event, not a thing. Aristotle 
referred to time as a "dimension of motion", which pleases the poet in us, 
but leaves the scientist unmoved. We do best if we adopt a pragmatic 
notion of time and think of it as being defined in terms of comparison and 
addition operations involving idealized clocks or stopwatches, much like 
Einstein did in his popular exposition of the theory of relativity (Einstein, 
1952). Whether those clocks are hourglasses or atomic clocks will affect 
the precision of the operations, but not their intrinsic character. What time 
"is" has no relevance in the present context, only the defining operations 
matter5. 

The concept of force arises in primitive terms from muscular effort, 
and is formalized based on the observation that a net force on an object 
(the vector sum of all the forces acting on the object) causes a rate of 
change in its velocity. Directionality is important in the definition: force is 
a vector quantity. 

A reader accustomed to considering speed as "distance divided by 
time" and area as "length squared" may be surprised to see them included 
in figure 2.1 as (possible) base quantities with their own comparison and 
addition operations. We include them to show that the set of base 
quantities is very much a matter of choice. Velocity (or speed, if direction 
is presumed) is a certain property of motion. A self-propelled toy car 
running across a tabletop has a speed, and we can define acceptable 
procedures for establishing whether two speeds are equal or unequal and 
for adding two speeds, as in figure 2.1d. Speed can therefore be taken as a 
base quantity, should we choose to do so. The same goes for area. Note 
that two areas may be equal without being congruent, provided one of 

5 Sir Arthur Eddinton (1939): "It has come to be accepted practice in introducing new 
physical quantities that they shall be regarded as defined by the series of measuring 
operations and calculations of which they are the result. Those who associate with the 
result a mental picture of some entity disporting itself in a metaphysical realm of 
existence do so at their own risk; physics can accept no responsibility for this 
embellishment". 
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them can be "cut up" and reassembled (added back together) into a form 
which is congruent with the other: the addition operation is invoked in 
making a comparison, and the comparison operation in addition. 

We have said that shape and color, though acceptable physical 
properties, cannot be base quantities because they lack acceptable addition 
operations. That shape is disqualified is obvious: what is the sum of a 
square and a circle? But why is color disqualified? We know that color in 
the form of light can be added according to well-defined rules, as when 
red light added to green produces yellow. Is this not an acceptable 
definition of physical addition? The answer is no. Blue equals blue. But 
according to this addition operation, blue plus blue also equals blue. The 
addition operation is not unique: nA=A for any color A, where n is any 
number. This disqualifies color from the ranks of physical quantities (and 
makes measurement of color in terms of a unit impossible). But, the 
persistent reader may argue, the color of an object can be identified by the 
wavelength of light reflected from it, and wavelength can be added. Is this 
not acceptable for an addition rule? The answer is again no. This is a rule 
for adding lengths, not for adding the property we perceive as color. 

2.3 Unit and numerical value

The two operations that define a base quantity make it possible to 
express any such quantity as a multiple of a standard sample of its own 
kind, that is, to "measure it in terms of a unit". The standard sample—the 
unit—may be chosen arbitrarily. The comparison operation allows the 
replication of the unit, and the addition operation allows the identification 
and replication of fractions of the unit. The measuring process consists of 
physically adding replicas of the unit and fractions thereof until the sum 
equals the quantity being measured (figure 2.2). A count of the number 
of whole and fractional units required yields the numerical value of 
the quantity being measured. If a is the unit chosen for quantities of type 
A, the process of measurement yields a numerical value A (a number) 
such that 

A = Aa (2.1) 

The measurement process is entirely physical. The only mathematics 
involved is the counting of the number of whole and fractional units once 
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physical equality has been established between the quantity being 
measured and a sum of replicas of the unit and fractions thereof. 

Figure 2.2: Measurement in terms of a unit and numerical value 

It should be emphasized that numbers can be ascribed to properties in 
many arbitrary ways, but such numbers will not represent numerical 
values of physical quantities unless they are assigned by a procedure 
consistent with the one defined above. 

The numerical value of a base quantity depends on the choice of unit. 
A physical quantity exists, independent of the choice of unit. My 
forefinger has the same length, regardless of whether I measure it in 
centimeters or inches. A quantity A can be measured in terms of a unit a or 
in terms of another unit a', but the quantity itself remains physically the 
same, that is, 

A = Aa = A'a'. (2.2) 

If the unit a' is n times larger than a, 

a' =na, (2.3) 

it follows from equation (2.2) that 

A′ = n −1A . (2.4) 

If the size of a base quantity's unit is changed by a factor n, the quantity's 
numerical value changes by a factor n-1 . 

By convention, all base quantities of the same kind are always 
measured in terms of the same unit. All base quantities of the same kind 
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thus change by the same factor when the size of that quantity's unit is 
changed. That is, the ratio of the numerical values of any two quantities of 
the same kind is independent of base unit size. 

Note also that when base quantities of the same kind are added 
physically (A+B=C), the numerical values satisfy an equation of the same 
form as the physical quantity equation (A+B=C), regardless of the size of 
the chosen unit. In other words, the numerical value equation mimics the 
physical equation, and its form is independent of the unit’s size. 

2.4 Derived quantities, dimensions, and dimensionless quantities

In describing physical things and events quantitatively, we refer to 
numerical values of base quantities, and also introduce numbers derived 
by inserting these values into certain mathematical formulas. We 
determine the distance L that an object moves in time t, for example, and 
calculate its speed V=Lt-1; or we measure a body's mass m and speed V and 
calculate its kinetic energy K=mV2/2. These numbers are derived 
quantities of the first kind. 

Not all numbers obtained by inserting base quantities into formulas 
can be considered physical quantities6. Base quantities have a 
transparently physical origin, which gives rise to the fact that the ratio of 
any two samples of a base quantity remains constant when the base unit 
size is changed; an arbitrary choice cannot affect a relative physical 
magnitude. Bridgman (1931) postulated that this is in fact a defining 
attribute of all physical quantities. This is 

Bridgman’s principle of absolute significance of relative magnitude: 

A number Q obtained by inserting the numerical values of base 
quantities into a formula is a physical quantity if the ratio of any 
two samples of it remains constant when base unit sizes are 
changed. 

Bridgman went on to show (Bridgman, 1931; see also the proof by 
Barenblatt, 1996) that a monomial formula satisfies the principle of 

6 From this point on, the term quantity will be used for the numerical value of a physical 
quantity, unless otherwise noted. 
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absolute significance of relative magnitude only if it has the power-law 
form 

AaBbCc ... (2.5)Q = 

where A, B, C, etc. are numerical values of base quantities and the 
coefficient and exponents a, b, c, etc. are real numbers whose values 
distinguish one type of derived quantity from another. All monomial 
derived quantities have this power-law form; no other form represents a 
physical quantity. 

A derived quantity of the first kind is defined in terms of a numerical 
value, which depends on the choice of base units. A derived quantity does 
not necessarily represent something tangible in the same sense as a base 
quantity, although it may. The square root of time, for example, is a 
derived quantity because it has the required power-law form, but we 
cannot point to any physical thing that “is” the square root of time. 

To avoid talking of "units" for quantities that may have no physical 
representation, but whose numerical values nevertheless depend on the 
choice of base units, we introduce the concept of dimension. Each type of 
base quantity has by definition its own dimension. If A is the numerical 
value of a length, we say it “has the dimension of length”, and write this as 
[A]=L where the square brackets imply “the dimension of” and L 
symbolizes the concept of length. By this we mean simply that if the 
length unit size is increased by a factor n, the numerical value A will 
increase by a factor n-1 . 

The dimension of a derived quantity conveys the same information in 
generalized form, for derived as well as base quantities. Consider a 
quantity defined by the formula 

l 2 m2 2Q = Ll
1
1 L2 ...M1 

m1 M2 ...t1
1 t2 ... (2.6) 

where the Li's are numerical values of certain lengths, Mi's of certain 
masses, and ti's of certain times, and and all exponents are real numbers. 
If the length unit is changed by a factor nL , the mass unit by a factor nm , 
and the time unit by a factor nt , it follows from equations (2.4) and (2.6) 
that the value of Q changes to 

Q′ = n −1Q (2.7a) 
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where 

∑ li ∑ mi ∑ tin = (nL ) (nm ) (n ) . (2.7b)t 

This implies that Q transforms like the numerical value of a base quantity 
∑mi ∑ iwith a unit whose size is proportional to L∑ l i M t , where L, M, and t 

represent the sizes of the length, mass, and time units, respectively. By 
analogy with the meaning of dimension for base quantities [see equation 
(2.4)], we therefore say that the derived quantity Q has the dimension 

∑ ti[Q] = (L)∑ l i (M)∑ mi ( t) . (2.8) 

Whether applied to a base or derived quantity, the dimension is simply 
a formulaic indication of how the quantity's numerical value transforms 
when the sizes of the base units are changed. A derived quantity's 
dimension follows from its defining equation. To obtain the result (2.8) for 
the quantity defined in equation (2.6), we simply substitute for each base 
quantity in equation (2.6) the symbol for its dimension, omit the numerical 
coefficient α, and obtain equation (2.8) by algebra. The dimension of a 

−2kinetic energy mV 2 2, for example, is M( )2L t = ML2t . 
Statements to the effect that a quantity’s dimension is an “expression 

of its essential physical nature” (Tolman, 1917) are either a meaningless 
tautology (in the case of base quantities) or nonsense (in the case of 
derived quantities). We shall see that a quantity’s dimension depends on 
the choice of the system of units, and is therefore under the control of the 
observer rather than an inherent attribute of that quantity.

 By convention, a particular derived quantity is specified by its 
numerical value followed by the base units upon which that value is based, 
the latter arranged in a form which reflects the quantity's dimension. The 
statement Q = 0.021kg s1/2 implies that Q is a quantity with dimension 
Mt1 2

and has a magnitude 0.021 if mass is measured in kilograms and 
time in seconds. Speaking loosely, it may be said that the quantity Q is 
"measured in units of kg s1/2", which implies both its dimension and the 
base units on which the indicated value is based. In common parlance the 
terms unit and dimension are often used synonymously, but such usage is 
undesirable in a treatise where fundamental understanding is paramount. 
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Some important points about derived quantities: 
1. The dimension of any derived physical quantity is a product of

powers of the base quantity dimensions. 
2. Sums of derived quantities with the same dimension are derived

quantities of the same dimension. Products and ratios of derived quantities 
are also derived quantities, with dimensions which are usually different 
from the original quantities. 

3. All derived quantities with the same dimension change their values
by the same factor when the sizes of the base units are changed. 

4. A derived quantity is dimensionless if its numerical value remains 
invariant when the base units are changed. An example is , whereVt L 
V = is a velocity, t is a time and L is a length. The dimension of adx dt 
dimensionless quantity is unity, the factor by which the quantity's 
numerical value changes when base units sizes are changed. 

5. Special functions (logarithmic, exponential, trigonometric, etc.) of
dimensional derived quantities are in general not derived quantities 
because their values do not in general transform like derived quantities 
when base unit size changes. Only when the arguments of these functions 
are dimensionless will the arguments and therefore the values of the 
functions remain invariant when units are changed. Special functions with 
dimensionless arguments are therefore derived quantities with dimension 
unity. 

2.5 Physical equations, dimensional homogeneity, and physical
constants 

In quantitative analysis of physical events one seeks mathematical 
relationships between the numerical values of the physical quantities that 
describe the event. We are not, however, interested in just any 
relationships that may apply between the values of physical quantities. A 
primitive soul may find it remarkable, or even miraculous, that his own 
mass in kilograms is exactly equal to his height in inches. We dismiss this 
kind of "relationship" as an accidental result of the choice of units. 
Science is concerned only with expressing a physical relationship between 
one quantity and a set of others, that is, with “physical equations.” Nature 
is indifferent to the arbitrary choices we make when we pick base units. 
We are interested, therefore, only in numerical relationships that remain 
true independent of base unit size. 
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This puts certain constraints on the allowable form of physical 
equations. Suppose that, in a specified physical event, the numerical value 
Qo of a physical quantity is determined by the numerical values of a set 
Q

1
...Q  other physical quantities, that is,

n

Qo = f (Q1,Q2, . . . ,Qn ), (2.9) 

The principle of absolute significance of relative values tells us that the 
relationship implied by equation (2.9) can be physically relevant only if Qo 

and f change by the same factor when the magnitudes of any base units are 
changed. In other words, a physical equation must be dimensionally 
homogeneous. Some reflection based on the points summarized at the end 
of Section 2.4 will show that dimensional homogeneity imposes the 
following constraints on any mathematical representation of a relationship 
like equation (2.9): 

(1) both sides of the equation must have the same dimension; 
(2) wherever a sum of quantities appears in f, all the terms in the sum 

must have the same dimension; 
(3) all arguments of any exponential, logarithmic, trigonometric or

other special functions that appear in f must be dimensionless. 

For example, if a physical equation is represented by 

A = Be −C −
(D1 + D2) + F  , (2.10)

E 

C must be dimensionless, D
1
 and D  must have the same dimension, and A,

2

B, D/E and F must have the same dimension. 
An important consequence of dimensional homogeneity is that the 

form of a physical equation is independent of the size of the base units. 
The following example may help to illustrate the reason for 

dimensional homogeneity in physical equations and show how conceptual 
errors that may arise if homogeneity isn’t recognized. Suppose we release 
an object from rest in a uniform gravitational field, in vacuum, and ask 
what distance x it will fall in a time t. We know of course that elementary 
Newtonian mechanics gives the answer as 
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1 2x = gt  , (2.11)
2 

where g is the local acceleration of gravity and has the dimension Lt-2 . 
This equation expresses the result of a general physical law, and is clearly 
dimensionally homogeneous. 

The physical basis of dimensional homogeneity becomes apparent 
when we consider the same phenomenon from a different perspective. 
Suppose we are ignorant of mechanics and conduct a large variety of 
experiments in Cambridge, Massachusetts, on the time t it takes a body 
with mass m to fall a distance x from rest in an evacuated chamber. After 
performing experiments with numerous masses and distances, we find that 
if t is measured in seconds and x in meters, all our data can be accurately 
represented, regardless of mass, with the single equation 

x = 4.91t2 . (2.12) 

This is a perfectly correct equation. It describes and predicts all 
experiments (in Cambridge, Massachusetts) to a very good accuracy. 
However, it appears at first glance to be dimensionally non-homogeneous, 
the two sides seemingly having different dimensions, and thus appears not 
to be a true physical equation. This impression is, however, based on the 
false presumption that the coefficient 4.91 remains invariant when units 
are changed. In fact, the coefficient 4.91 represents not a dimensionless 
number, but a particular numerical value of a dimensional physical 
quantity which characterizes the relationship between x and t in the 
Cambridge area. That this must be so becomes clear when we consider 
how equation (2.12) must transform when units are changed. We know 
that when units are changed, the actual physical distance x remains 
invariant, and we therefore argue that to obtain the falling distance in feet, 
for example, the right hand side of equation (2.12), which gives it in 
meters, must be multiplied by 3.28, the number of feet in one meter. 
Thus, if x is measured in feet and t in seconds, the correct version of 
equation (2.12) is 

x = 16.1t 2  . (2.13) 
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This same transformation could also have been obtained by arguing that 
equation (2.12), being an expression of a general physical law, must, 
according to Bridgman’s principle of absolute significance of relative 
magnitude, be dimensionally homogeneous, and therefore should properly 
have been written 

2 x = ct (c = 4.91ms −2 ) (2.14) 

This form makes clear that the coefficient c is a physical quantity rather 
than a numerical coefficient. The units of c indicate its dimension and 
show that a change of the length unit from meters to feet, with the time 
unit remaining invariant, changes c by the factor 3.28, the inverse of the 
factor by which the length unit is changed. This gives c=16.1 ft s-2, as in 
equation (2.13). 

Equation (2.14) is the correct way of representing the data of equation 
(2.11). It is dimensionally homogeneous, and makes the transformation to 
different base units straightforward. 

Every correct physical equation—that is, every equation that expresses 
a physically significant relationship between numerical values of physical 
quantities—must be dimensionally homogeneous. A fitting formula 
derived from correct empirical data may at first sight appear dimensionally 
non-homogeneous because it is intended for particular base units. Such 
formulas can always be rewritten in general, homogeneous form by the 
following procedure (Bridgman, 1931): 

(1) Replace all the numerical coefficients in the equation with unknown 
dimensional constants. 

(2) Determine the dimensions of these constants by requiring that the new 
equation be dimensionally homogeneous. 

(3) Determine the numerical values of the constants by matching them 
with those in the original equation when the units are the same. 

This is of course how equation (2.14) was derived from equation 
(2.12). 

Another example serves to reinforce this point. Suppose it is found that 
the pressure distribution in the earth's atmosphere over much of the United 
States can be represented (approximately) by the formula 
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−0.00012z p = 1.01x105 e (2.15) 

where p is the pressure in Nm-2 and z is the altitude in meters. This 
expression applies only with the cited units. The correct, dimensionally 
homogeneous form of this equation is 

−bz −1)p = ae ( a = 1.01× 105 Nm−2 , b = 0.00012m (2.16) 

where a and b are physical quantities. In this form the equation is valid 
independent of the chosen base units. The dimensions of a and b indicate 
how these quantities change when units are changed. 

The two quantities a and b in equation (2.16) are physical constants in 
the sense that their values are fixed once the system of units is chosen. In 
this case the constants characterize a particular environment⎯the pressure 
distribution in the earth’s atmosphere over the US. Similarly, the 
acceleration of gravity g in equation (2.11) is a physical constant that 
characterizes the (local!) gravitational force field at the earth’s surface. 

The basic laws of physics also contain a number of universal physical 
constants whose magnitudes are the same in all problems once the system 
of units is chosen: the speed of light in vacuum c, the universal 
gravitational constant G, Planck’s constant h, Boltzmann’s constant kB, 
and many others. 

2.6 Derived quantities of the second kind 

The classification of quantities as base or derived is not unique. There 
exist general laws that bind different kinds of quantities together in certain 
relationships, and these laws can be used to transform base quantities into 
derived ones. Such transformations are useful because they reduce the 
number of units that must be chosen arbitrarily, and simplify the forms of 
physical laws. 

Area, for example, may be taken as a base quantity with its own 
comparison and addition operations, and measured in terms of an 
arbitrarily chosen (base) unit: a certain postage stamp, say, to use an 
absurd example. The floor area of a room may be measured by covering 
the floor with copies of this postage stamp and parts thereof, and counting 
the number of whole stamps required. If we adopt this practice we will 
eventually find that, regardless of the unit we have chosen for measuring 
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an area A, its numerical value A will depend on its linear dimensions 
according to 

A = c∫ dxdy (2.17) 

where the integral is taken over the area and c is a dimensional constant 
the magnitude of which depends on the choice of base units of area and 
length. Dimensional homogeneity requires that c be a derived quantity, 

A 
c = 

∫ dxdy
(2.18) 

with dimension AL-2 . 
Equation (2.17) can be thought of as a "physical law." A little 

reflection reveals, however, that it holds simply because the quantity we 
have symbolized as dxdy is defined by comparison and addition rules that 
happen to be similar to those we have chosen for area. Equation (2.17) is 
thus not really a law of nature, but one have crafted ourselves. 

Dimensional constants like c in Equation (2.17) whose values depend 
on the choice of units but are entirely independent of the problem being 
considered are called universal constant.

 The law (2.17) suggests a simplification. If we choose to measure area 
in terms of a unit that is defined by the area of a square with sides equal to 
the length unit, the physical coefficient c becomes unity, and equation 
(2.17) becomes

A = ∫ dxdy (2.19) 

Area, in effect, has become a derived quantity that is defined in terms of 
operations involving length. Equation (2.19) does not imply that area now 
"is", in any physical sense, length squared. The physical property that is 
area remains what it was before, quite distinct from length, and for that 
matter quite distinct from "length squared", of which we have no physical 
concept whatsoever. We have simply noted that, because our concepts of 
"integral" and "area" are in fact similar, we may choose to measure area 
via operations involving length, and have made a decision to do so. The 
fact that area now has the dimension L2 simply indicates that the numerical 
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value of any area so defined will change by a factor n
-2
 when the length 

unit is changed by a factor n.
 By transforming area in this way from a base to a derived quantity, we 

have accomplished two simplifications: the length unit automatically 
determines the area unit, and the dimensional physical constant c in 
equation (2.17) is replaced with unity. 

There is nothing sacred about choosing c=1 in this kind of 
transformation. We could have adopted as the unit for area circle with 
diameter equal to one length unit, in which case area would have been 
defined by 
have been perfectly acceptable, but less convenient since it would force us 
to waste a lot of paper writing unnecessary 4/π's. In other instances, 
dimensionless coefficients other than unity are introduced deliberately to 
make things more convenient. For example, by defining the kinetic energy 
as K = mV 2 2 instead of K = mV 2  we make the energy equation for a 
point mass in a force field read K+U=constant instead of K/2+U=constant, 
where U is the force potential. Similarly, the 4π terms that appear in the SI 
system of units in the integral forms of Gauss's and Ampere's laws are 
placed there in order to eliminate numerical coefficients in the differential 
forms (Maxwell’s field equations). 

A = ( 4 /  ) ∫ dxdy  instead of by equation (2.19). This would 

Speed offers an example similar to area. We may define speed as a 
base quantity with its own comparison and addition operations, and 
choose for it a base unit—the speed of a certain very reliable wind-up toy 
on a horizontal surface, say, to use again an absurd example. If we take 
this route we would eventually discover that the quantity we have 
identified as speed is in fact proportional to the distance covered in unit 
time. We can then choose to define speed as the derived quantity V=dx/dt, 
which is equivalent to choosing a speed unit such that unit distance is 
covered in unit time. 

A more interesting example arises with force. Force may be taken as a 
base quantity with an arbitrarily specified unit—the (equilibrium) force 
required to extend a standard spring a given distance, say. Newton's 
original law of motion states that if a body (a "point mass", to be precise) 
of mass m is subjected to a net force F (in the x-direction, say) under non-
relativistic conditions, it accelerates in the direction of the force and the 
acceleration a = d2 x dt2 is related to the force F and mass m by 

F = cma (2.20) 
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where the coefficient c is a universal constant with dimension Ft2M-1L-1 if 
force, length, mass and time are all selected as base quantities. Equation 
(2.20) is a general physical law which expresses a relationship between the
numerical values of three different physical quantities that are involved in 
the dynamics of a point mass—force, (gravitational) mass, and 
acceleration. 

We are at liberty, however, to choose a force unit such that one unit of 
force will give unit mass unit acceleration under non-relativistic 
conditions. If we do this, we make c=1 in equation (2.20) and throw 
Newton's law into the coefficient-less form 

F = ma (2.21) 

where force has a dimension MLt-2. Equation (2.21) does not imply that 
force "is" in any physical sense a mass times an acceleration. The product 
of a mass times an acceleration is in fact not defined in physical terms, and 
in any case, a force can exist without there being any mass or acceleration 
involved, as for example when I push on an immobile brick wall (and the 
wall exerts an equal and opposite counter-force on me). In contrast with 
the examples of area and speed, equation (2.21) does not in all cases 
provide a recipe for directly evaluating a force by making in situ 
measurements of base quantities. Instead, we have imparted to force the 
character of a derived quantity by making the force unit depend in a 
particular way on the units of mass and length. 

Quantities that are transferred into the derived category by choosing a 
unit motivated by a general physical law are called derived quantities of 
the second kind. Force is one example; heat and electric charge are also 
treated in this way in the SI system. 

2.7 Systems of units

A system of units is defined by 

(1) a complete set of base quantities with their defining comparison and 
addition operations, 

(2) the base units, and
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(3) all relevant derived quantities, expressed in terms of their defining 
equations (e.g V=dx/dt), if they are of the first kind, or the forms of the 
physical laws that define their units (e.g. F=ma defines the force unit 
in the SI system), if they are of the second kind. 

The set of derived quantities is open-ended; new ones may be introduced 
at will in any analysis. 

Systems of units are said to be of the same type if they differ only in 
the magnitudes of the base units. 

In the SI system (Système International) there are six base quantities 
(table 2.1): length, time, mass, temperature, current, number of elementary 
particles, and luminous intensity. The units of length, time and mass are 
the meter (m), the second (s) and the kilogram (kg), respectively. Force is 
made a derived quantity by writing Newton's law as F=ma. 

The temperature in any system of units must be a thermodynamic 
temperature. Numbers read from an arbitrarily constructed thermometer 
scale can be used for establishing whether two temperatures are equal, but 
they are not numerical values of a physical quantity. (Is 2oC "twice as hot" 
as 1oC ? Is 0oC "zero" temperature in the sense of there being an absence 
of temperature? For that matter, if temperature is defined in terms of a 
thermometer with an arbitrarily marked temperature scale, is there any 
reason why heat should flow from a "higher" to a "lower" temperature?) 
The thermodynamic (or absolute) temperature is, however, defined in 
terms of physical comparison and addition operations appropriate to a base 
quantity7. Measurements via a Carnot engine or equivalent device yield 
the ratio of two absolute temperatures; the temperature unit (i.e. the size of 
the "degree") must be chosen arbitrarily. The SI temperature unit is the 
kelvin (K), which is defined as the fraction 1/273.16 of the 
thermodynamic temperature of the triple point of water. 

T

7  The ratio of the numerical values of two physical thermodynamic temperatures T1 and 

2 can for example be defined in terms of the (physically measurable) efficiency η12 of a 
Carnot engine which operates between heat reservoirs at the two temperatures. If T1 is the 
temperature of the reservoir into which heat flows, T1/T2≡1-η12, where η12 is a pure 
number. This provides a physical operation for determining the ratio of the numerical 
values of T1 and T2, and implies a physical addition for the two quantities: if 
T2=nT1,where n=T2 /T1 , then T1+T2≡T3=(1+n)T1. The temperature T =(1+n)T1 can be

3
physically identified by noting that if a Carnot engine is run between this temperature and 
T1, it will have an efficiency n/(1+n). 
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Table 2.1: The SI system of units 

Base quantities (complete set) 

Quantity SI name SI Symbol 

length, L meter m 

time, t second s 

mass, M kilogram kg 

temperature, T kelvin K 

current, I ampere A 

number of elementary particles mole mol 

luminous intensity candela cd 

Derived quantities (incomplete set) 

Quantity Defining 

equation/law 

Dimension Dimensional 

Symbol 

Name 

area 

volume 

frequency 

velocity 

acceleration 

density 

force 

stress/pressure 

work/energy 

torque 

power 

A= ∫dxdy 

V= ∫dxdydz 

f=l/τ 
v=dx/dt 

a=d2x/dt2 

ρ=M/V 

F=Ma 

p=F/A 

W=∫Fdx 

T=Fl 

dW/dt 

L2 

L3 

t-1 

Lt-1 

Lt-2 

ML-3 

MLt-2 

ML-1 t-2 

ML2t-2 

ML2t-2 

ML2t-3 

m2 

m3 

s -1 

ms-1 

ms-2 

kg m-3 

kg m s-2 

N m-2=kg m-1s-2 

N m = kg m2s-2 

N m = kg m2s-2 

J s-1 = kg m2s-3 

hertz (Hz) 

newton (N) 

pascal (Pa) 

joule (J) 

watt (W) 

charge Q=∫ ldt It A s coulomb (C) 

In SI the electric current is adopted as a base quantity and charge is 
thrown into the derived category (via Q=∫Idt), as are all other electric and 
magnetic quantities. The unit for current is the ampere (A), which is 



30


defined as the current which, when passed through each of two infinite, 
parallel conductors in vacuum one meter apart, will produce a force of 
2x10-7 N per unit length on each conductor. The conventional factor 2x10-7 

is introduced for convenience and historical reasons, and appears in the SI 
version of Ampere's law. 

The mole unit is retained in SI as an alternative way of specifying 
number of things: instead of counting things one by one, one counts them 
in lots of 6.02x1023 (Avagadro’s number). One must, however, specify 
what things one is counting, e.g. "one mole of atoms, of molecules, of 
tennis balls", or whatever. Note that the SI mole is in fact the old "gram 
mole". 

Luminous intensity does not refer to radiant energy flow per unit solid 
angle as such, which could be measured in watts per steradian, but only to 
that portion of it to which "the human eye" (as defined by a standard 
response curve) is sensitive. At a wavelength of 555 nanometers, where 
the human eye is most sensitive to light, one candela is equivalent to 
1.46x10-3 watt per steradian. 

Also included sometimes among the base quantities are two 
dimensionless quantities, plane angle and solid angle, which are measured 
in radians and steradians, respectively. We consider them derived 
quantities because, though dimensionless, they are defined in terms of 
operations involving length, much like area is defined in terms of length 
operations. 

We note again that the dimension of a derived quantity depends on the 
choice of system of units, which is under the control of the observer and 
has nothing to do with the quantity's intrinsic nature. Indeed, quantities 
with quite different physical meaning, like work and torque, can have the 
same dimension. 

The effect of the system of units on the dimensions of quantities is 
illustrated in table 2.2, which shows the dimensions of some mechanical 
quantities in three different types of systems of units. Systems of units are 
of the same type if they have base units of the same kind but different 
magnitude, and the derived quantities and the basic physical laws have the 
same mathematical forms, differing only in the values of the physical 
constants that appear in them. 

In the first type of system illustrated in the table, length, time and mass 
are base quantities and the force unit is measured in terms of mass and 
acceleration via Newton's law in the form F=ma. The SI and the cgs 
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(centimeter, gram, second) systems are in this category. In the second 
type, length, time and force are base, and mass is measured via F=ma. An 
example is the British Gravitational System, in which the base units are 
the foot, the second and the pound-force (lbf). The pound-force is the 
force exerted by standard gravity (32.2 ft/s2) on a standard mass sample, 
the pound-mass (hence the term "gravitational system"). Mass in this 

Table 2.2: Dimensions of some mechanical quantities in different 
types of systems of units 

Base quantities and their dimensions in three types of system of units 

Type 1 Type 2 Type 3 

Base quantities & dimensions L, M, t L, F, t L, M, F, t 

Dimensions of some derived quantities 

velocity = dx/dt Lt-1 Lt-1 Lt-1 

acceleration = d2x/dt2 Lt-2 Lt-2 Lt-2 

mass M Ft2L-1 M 

area=∫dxdy L2 L2 L2 

force MLt-2 F F

 c=F/ma in Newton’s law c=l c=l FM-1L-1t2 

work = ∫Fdx ML2t-2 FL FL 

stress = F/A ML-1t-2 FL-2 FL-2 

viscosity=τ/(∂u/∂y) ML-1t-1 FL-2t FL-2t 

system is a derived quantity with dimension Ft2L-1 and a unit (the "slug") 
which turns out to be g=32.2 times as large as the pound-mass. In the third 
type, length, time, mass, and  force are taken as base quantities, and 
Newton's law reads F=cma, where c is a physical constant with dimension 
Ft2M-1L-1. The British Engineering System is an example. In this system 
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the base units taken are the foot, the second, the pound-mass (lbm), and 
the pound-force (lbf), and the constant in Newton's law has the value 
c=1/32.2 lbf s2 lbm-1 ft-1. 

Table 2.2 illustrates the fact that, while an actual physical quantity like 
force is the same regardless of the (arbitrary) choice of the system of units, 
its dimension depends on that choice. What is more, depending on how 
derived quantities are defined, a given physical law may contain a 
dimensional physical constant the value of which must be specified (as in 
F=cma), or it may contain no physical constant (as in F=ma). 

An interesting point to note is that only a few of the available universal 
laws are usually "used up" to make base quantities into derived ones of the 
second kind. There are many laws left with universal dimensional physical 
constants that could in principle be set equal to unity: the gravitational 
constant G, Planck's constant h, Boltzmann's constant kB, the speed of light 
in vacuum c, etc. This leaves us with some interesting possibilities. For 
example, it is possible to define systems of units that have no base 
quantities at all (see Bridgman, 1931). In such systems all units of 
measurement are related to some of the universal constants that describe 
our universe. In effect, there exist in the universe "natural" units for all 
base quantities, based on universal constants such as the speed of light, the 
quantum of energy, etc. Unfortunately, the choice of such “natural” 
systems of units turns out to be far from unique, which renders futile any 
attempt to endow any one of them with unique significance. 

2.8 Recapitulation

1. A base quantity  is a property that is defined in physical terms by 
two operations: a comparison operation, and an addition operation. The 
comparison operation is a physical procedure for establishing whether two 
samples of the quantity are equal or unequal; the addition operation 
defines what is meant by the sum of two samples of that property. 

2. Base quantities are properties for which the following concepts are
defined in terms of physical operations: equality, addition, subtraction, 
multiplication by a pure number, and division by a pure number. Not 
defined in terms of physical operations are: product, ratio, power, and 
logarithmic, exponential, trigonometric and other special functions of 
physical quantities. 
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3. A base quantity can be measured in terms of an arbitrarily chosen
unit of its own kind and a numerical value. 

4. A derived quantity of the first kind is a product of various powers of 
numerical values of base quantities. A derived quantity is defined in terms 
of numerical value (which depends on base unit size) and does not 
necessarily have a tangible physical representation. 

5. The dimension of any physical quantity, whether base or derived, is 
a formula that defines how the numerical value of the quantity changes 
when the base unit sizes are changed. The dimension of a quantity does 
not by itself provide any information on the quantity's intrinsic nature. The 
same quantity (e.g. force) may have different dimensions in different 
systems of units, and quantities that are clearly physically different (e.g. 
work and torque) may have the same dimension. 

6. Relationships between physical quantities may be represented by
mathematical relationships between their numerical values. A 
mathematical equation that correctly describes a physical relationship 
between quantities is dimensionally homogeneous (see section 2.5). Such 
equations remain valid when base unit sizes are changed arbitrarily. 

7. The categorization of physical quantities as either base or derived is
to some extent arbitrary. If a particular base quantity turns out to be 
uniquely related to some other base quantities via some universal law, then 
we can, if we so desire, use the law to redefine that quantity as a derived 
quantity of the second kind whose magnitude depends on the units chosen 
for the others. All base quantities that are transformed into derived 
quantities in this way retain their original physical identities (i.e. their 
comparison and addition operations), but their numerical values are 
measured in terms of the remaining base quantities, either directly via a 
defining equation or indirectly by using a unit that is derivable from the 
remaining base units. 

8. A system of units is defined by (a) the base quantities, (b) their
units, and (c) the derived quantities, each with either its defining equation 
or the form of the physical law that has been used to cast the quantity into 
the derived category. Both the type and the number of base quantities are 
open to choice. 
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3. Dimensional Analysis

This chapter introduces the procedure of dimensional analysis and 
describes Buckingham’s π-theorem, which follows from it. Section 3.1 
lays down the procedure in general terms and defines the vocabulary. 
Section 3.2 gives an example, which the reader may wish to read in 
parallel with section 3.1 step by step. Section 3.3 discusses the utility of 
dimensional analysis and some of the pitfalls and questions that arise in its 
application to real problems. 

3.1 The steps of dimensional analysis and Buckingham's -theorem 

The premise of dimensional analysis is that the form of any physically 
significant equation must be such that the relationship between the actual 
physical quantities remains valid independent the magnitudes of the base 
units. Dimensional analysis derives the logical consequences of this 
premise. 

Suppose we are interested in some particular physical quantity Q0 that 
is a "dependent variable" in a well defined physical process or event. By 
this we mean that, once all the quantities that define the particular process 
or event are specified, the value of Q0 follows uniquely. 

Step 1: The independent variables 

The first and most important step in dimensional analysis is to identify a 
complete set of independent quantities Q1...Qn that determine the value of 
Q0, 

Q0 = f(Q1, Q2, ... , Qn). (3.1) 

A set Q1...Qn  is complete if, once the values of the members are specified, 
no other quantity can affect the value of Q0, and independent if the value 
of each member can be adjusted arbitrarily without affecting the value of 
any other member. 

Starting with a correct set Q1...Qn is as important in dimensional 
analysis as it is in mathematical physics to start with the correct 
fundamental equations and boundary conditions. If the starting point is 
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wrong, so is the answer. We defer to section 3.2 the question of how a 
correct set is to be identified. 

The relationship expressed symbolically in equation (3.1) is the result 
of the physical laws that govern the phenomenon of interest. It is our 
premise that its form must be such that, once the values Q1...Qn are 
specified, the equality holds regardless of the sizes of the base units in 
terms of which the quantities are measured. The steps that follow derive 
the consequences of this premise. 

Step 2: Dimensional considerations 

Next we list the dimensions of the dependent variable Q0 and the 
independent variables Q1...Qn. As we have discussed, the dimension of a 
quantity depends on the type of system of units (see table 2.2), and we 
must specify at least the type the system of units before we do this. For 
example, if we use a system of type 1 in table 2.2 and are dealing with a 
purely mechanical problem, all quantities have dimensions of the form 

[Qi ] = Lli Mmi t i (3.2) 

where the exponents li, mi and are dimensionless numbers that followi

from each quantity’s definition. 
We now pick from the complete set of physically independent 

variables Q1...Qn a complete, dimensionally independent subset Q1...Qk 

(k n), and express the dimension of each of the remaining independent
variables Qk+1...Qn and the dependent variable Q0 as a product of powers of 
Q1...Qk.  All physical quantities have dimensions which can be expressed 
as products of powers of the set of base dimensions. Alternatively, it is 
possible to express the dimension of one quantity as a product of powers 
of the dimensions of other quantities which are not necessarily base 
quantities. A subset Q1...Qk of the set Q1...Qn is dimensionally independent 
if none of its members has a dimension that can be expressed in terms of 
the dimensions of the remaining members. And complete if the 
dimensions of all the remaining quantities Qk+1...Qn of the full set can be 
expressed in terms of the dimensions of the subset Q1...Qk. 

Since equation (3.1) is dimensionally homogeneous, the dimension of 
the dependent variable Q0 is also expressible in terms of the dimensions of 
Q1...Qk. 
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The dimensionally independent subset Q1...Qk is picked by trial and 
error. Its members may be picked in different ways (see section 3.2), but 
the number k of dimensionally independent quantities in the full set 
Q1...Qn is unique to the set, and cannot exceed the number of base 
dimensions which appear in the dimensions the quantities in that set. For 
example, if the dimensions of Q1...Qn involve only length, mass, and time, 
then k≤3. 

Having chosen a complete, dimensionally independent subset Q1...Qk, 
we express the dimensions of Q0 and the remaining quantities Qk+1...Qn in 
terms of the dimensions of Q1...Qk. These will have the form 

Nik ][Qi ] = [Q1 
Ni 1 Q2 

Ni 2 ...Qk (3.3) 

if i>k or i=0. The exponents Nij are dimensionless real numbers and can in 
most cases be found quickly by inspection (see section 3.2), although a 
formal algebraic method can be used. 

The formal procedure can be illustrated with an example where length, 
mass and time are the only base quantities, in which case all dimensions 
have the form of equation (3.2). Let us take Q1, Q2, and Q3 as the complete 
dimensionally independent subset. Equating the dimension given by 
equation (3.2) with that of equation (3.3), we obtain three equations 

3 

li = ∑ Nijl j 
j =1 

3 

mi = ∑ Nijm j (3.4) 
j =1 

3 

ti = ∑ Nij tj 
j =1 

which can be solved for the three unknowns Ni1, Ni2, and Ni3. 
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Step 3: Dimensionless variables 

We now define dimensionless forms of the n-k remaining independent 
variables by dividing each one with the product of powers of Q1...Qk 

which has the same dimension, 

Qk +i
N( k+i ) k 

, (3.5)Π i = N(k +i )1 Q2 
N(k +i ) 2...QkQ1 

where i=1, 2,..., n-k, and a dimensionless form of the dependent variable 
Q0, 

(3.6)Π0 = 
Q1 

N01 Q2 
N

Q
02

0

...Qk
N 0 k 

. 

Step 4: The end game and Buckingham’s -theorem 

An alternative form of equation (3.1) is 

= f(Q
1
,Q

2
, ...., Q

k
; 1, 2 , ..., n-k) (3.7) 

in which all quantities are dimensionless except Q1...Qk. The values of the 
dimensionless quantities are independent of the sizes of the base units. The 
values of Q1...Qk, on the other hand, do depend on base unit size. They 
cannot be put into dimensionless form since they are (by definition) 
dimensionally independent of each other. From the principle that any 
physically meaningful equation must be dimensionally homogeneous, that 
is, valid independent of the sizes of the base units, it follows that Q1...Qk 

must in fact be absent from equation (3.7), that is, 

= f( 1, 2 , ..., n-k)  . (3.8) 

This equation is the final result of the dimensional analysis, and 
contains 
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 Buckingham's -theorem: 

When a complete relationship between dimensional physical 
quantities is expressed in dimensionless form, the number of 
independent quantities that appear in it is reduced from the original 
n to n-k, where k is the maximum number of the original n that are 
dimensionally independent. 

The theorem derives its name from Buckingham's use of the symbol for 
the dimensionless variables in his original 1914 paper. The π-theorem tells 
us that, because all complete physical equations must be dimensionally 
homogeneous, a restatement of any such equation in an appropriate 
dimensionless form will reduce the number of independent quantities in 
the problem by k. This can simplify the problem enormously, as will be 
evident from the example that follows. 

The π−theorem itself merely tells us the number of dimensionless 
quantities that affect the value of a particular dimensionless dependent 
variable. It does not tell us the forms of the dimensionless variables. That 
has to be discovered in the third and fourth steps described above. Nor 
does the π-theorem, or for that matter dimensional analysis as such, say 
anything about the form of the functional relationship expressed by 
equation (3.7). That form has to be discovered by experimentation or by 
solving the problem theoretically. 

3.2  An example: Deformation of an elastic ball striking a wall

Suppose we wish to investigate the deformation that occurs in elastic balls 
when they impact on a wall. We might be interested, for example, in 
finding out what determines the diameter d of the circular imprint left on 
the wall after a freshly dyed ball has rebounded from it (figure 3.1). 

Step 1: The independent variables 

The first step is to identify a complete set of independent quantities that 
determine the imprint radius d. We begin by specifying the problem more 
clearly. We agree to restrict our attention to (initially) spherical, 
homogeneous balls made of perfectly elastic material, to impacts at 
perpendicular to the wall, and to walls that are perfectly smooth and flat 
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and so stiff and heavy that they do not deform or move during the impact 
process. We also agree to adopt a system of units of type 1 in table 2.2, 
like the SI system. 

Fig. 3.1: A freshly dyed elastic ball leaving imprint after impact with rigid wall. 

The numerical value of a dependent variable like d will be depend on 
the values of all quantities that distinguish one impact event from another. 
Experience suggests that these should include at least the following: the 
ball's diameter D and velocity V just prior to contact (the initial 
conditions) and its mass m. The ball’s intrinsic material properties will 
also play a role. Our theoretical understanding of solid mechanics tells us 
that the quasi-static response of a perfectly elastic material is characterized 
by two material properties, the modulus of elasticity E and Poisson's ratio 
, and that the inertial effects which inevitably come into play during 

collision and rebound will also depend on the material’s density . The
properties of the wall are irrelevant if it is indeed perfectly rigid, as we 
assumed. We know, however, by thinking of how the problem would have 
to be set up as a theoretical one, that the answer for the numerical value d 
will also depend on the values of all universal constants that appear in the 
physical laws that control the ball's impact dynamics. In this case the 
process is governed by Newton's law of motion and the law of mass 
conservation. Having chosen a system of units of type 1 in table 2.2, we 
know that Newton's law has the form F=ma and contains no universal 



40


constants8. Nor are there any physical constants in the law of mass 
conservation. 

We seem to arrive at the conclusion that d depends on six quantities: 
D, V, m, E, . This is a complete set, as required, but not an independent 
set: once the ball's mass and diameter are specified, its density follows. 
We must therefore exclude either the density or the mass. (Other quantities 
like V2 , DE1/2, etcetera, all involving quantities that affect the value of d, 
are excluded for the same reason: they are not independent of the 
quantities already included.) We conclude that the following relationship 
expresses the impact diameter in terms of a complete set of independent 
variables: 

d = d(V, (3.9), D, E, ). 

Note that the choice of a complete, independent set for a specified 
problem is not unique except for the number n of its members (n=5 in this 
case). One could just as well have chosen V2, , D, E,  and 
D, E, 

, say, or V, m, 
—see section 3.3. It should also be noted that further assumptions 

have been taken for granted in equation (3.9). We have presumed, for 
example, that the ball’s motion is unaffected by the properties of the fluid 
through which it approaches the wall (which is certainly OK if the ball 
moves through vacuum and a good approximation in air, but may not 
apply to small balls in viscous liquids), and that gravitational effects play a 
negligible role. See the discussion in section 3.3. 

Step 2: Dimensional considerations 

In the type of system of units we have adopted in step 1, the 
dimensions of the quantities in equation (3.9) are: 

independent: [V]=Lt-1 

[ ]=ML-3 

[D]=L (3.10) 
[E]=ML-1t-2 

[ ]=1 

8 If, on the other hand, we had decided to use a system of type 3 in Table 2.1, the value of 
the dimensional constant c=F/ma for the chosen system of units would have to be 
specified, and would affect the value of d. 
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dependent: [d]=L 

Inspection of the above shows that the three quantities V, , and D, for 
example, comprise a complete, dimensionally independent subset of the 
five independent variables. The dimension of any one of these three 
cannot be made up of the dimensions of the other two. The dimensions of 
the remaining independent variables E and and the dependent variable d 
can, however, be made up of those of V, and D as follows: 

−2independent:	 [E] = ML−1t = (ML−3 )(Lt)2 = [ V 2 ] 
[ ] = 1 

(3.11) 
dependent: [d] = L = [D] 

We have written down these results very simply by inspection. 
Accomplished practitioners seldom use the formal algebraic method of 
section 3.1. Note again that the dimension of a dimensionless quantity like
 is unity, the factor by which dimensionless numbers change when the 

sizes of the base units are changed. 

Step 3: Dimensionless similarity parameters 

We non-dimensionalize the remaining independent variables E and and 
the dependent variable d by dividing them by V 2 , D, and unity, 
respectively, as suggested by equation (3.11): 

ED3 

independent: Π1 = 
mV 2 

Π2 = (3.12) 

dependent: Π0 = 
d 

D 
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Step 4: The end game 

Using the logic that led to Buckingham's π−theorem, we now conclude 
that 

Π = f (Π1,Π2 ),o 

or 

d ⎛ E ⎞⎟ . (3.13)= f ⎜ 
V 2

, 
⎠D ⎝ 

The number of independent variables has been reduced from the original 
n=5 that define the problem to n-k =2. 

3.3 On the utility of dimensional analysis, and some difficulties and
 questions that arise in its application 

Similarity 

Dimensional analysis provides a similarity law for the phenomenon under 
consideration. Similarity in this context implies a certain equivalence 
between two physical phenomena that are actually different. The collisions 
of two different elastic spheres 1 and 2 with a rigid wall, each with its own 
values of V, , D, E, and 
under particular conditions where the parameters of the two events are 
such that 

, may appear to be quite different. However, 

1 and 2 have the same values, that is, where 

E1E2 = 
2V2

2 
1V1

2 

(3.14) 

2 = 1 , 

equation (3.13) informs us that 0 has the same value in both cases, that 
is, 

d1d2 = . (3.15)
D2 D1 
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When the relationships in equation (3.14) apply, the two dynamic events 
are similar in the sense of equation (3.15). 

Out-of-scale modeling 

Scale modeling deals with the following question: If we want to learn 
something about the performance of a full-scale system 1 by testing a 
geometrically similar small-scale system model 2 (or vice-versa, if the 
system of interest inaccessibly small), at what conditions should we test 
the model, and how should we obtain the full-scale performance from 
measurements at the small scale? Dimensional analysis provides the 
answer. 

Suppose we need to know the deformation diameter of a huge, soft 
rubber ball with a diameter D  of 5 meters and properties E

1
, and , as,1

it hits the pavement with a speed V
2 
of 10 m/s, but are unable to compute it 

from basic principles. In that case we need only perform one small-scale 
test with a model 2 of diameter D2, selecting its properties and test 
conditions such that equations (3.14) are satisfied, and measure its imprint 
diameter d2. The full-scale value d

1
 of the big ball’s imprint diameter at its 

"design conditions" can then be obtained from equation (3.15). 

Dimensional analysis reduces the number of variables and minimizes 
work 

Dimensional analysis reduces the number of variables that must be 
specified to describe an event. This often leads to an enormous 
simplification. In our example of the impacting ball the answer depends on 
five independent variables (equation 3.9), that is, a particular event may be 
represented as a distribution of d defined in a five-dimensional space of 
independent variables. Suppose we set out to obtain the answer in a certain 
region (a certain volume) of this variable-space, by either computation or 
experimentation, and decide that 10 data points will be required in each 
variable, with the other four being held constant. This would require 
obtaining 105 data points. Dimensional analysis, however, shows us that in 
dimensionless form the answer depends only on two similarity parameters. 
This two-dimensional space can be explored with similar resolution with 
only 102 data points, that is, with 0.1% of the effort. 

1



            Figure 3.2: Experimental data of d/D vs E/ρV2 for γ=0.3 and γ=0.5.

Figure 3.2: Plot of “experimental data” in dimensionless form.

44 

Table 3.1 shows some “experimental data” for impacts with balls of 
three materials and various values of impact velocity. These results were 
actually computed by Mark Bathe (2001) using the finite-element code 

Table 3.1: Computed “Experimental data” 

Material E 

(MPa) 

ρ 
(kg m−3) 

V 

(m s-1) 

γ E 

ρ V2 

d 

D 

Symbol 

(Fig. 3.2) 

Alumina 3.66E+05 3960 43 0.22 50133 0.150 

3.66E+05 3960 59 0.22 26937 0.170 

3.66E+05 3960 77 0.22 15511 0.190 

Aluminum 6.90E+04 2705 80 0.33 3973 0.250 

6.90E+04 2705 126 0.33 1608 0.300 

6.90E+04 2705 345 0.33 215 0.450 

Rubber 3.93E+00 1060 5 0.47 127 0.500 

3.93E+00 1060 7 0.47 79 0.550 

3.93E+00 1060 12 0.47 24 0.700 

Figure 3.2: Plot of “experimental data” in dimensionless form. 
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ADINA. Fig. 3.2 shows these data as a plot of d/D vs. E/ρV2 with γ as a 
parameter. The simulated “experimental scatter” in Fig. 3.2 actually 
results from the coarseness of the computational grid. Disregarding the 
scatter, all points fall essentially on a common curve, as predicted by 
dimensional analysis. The influence of the Poisson’s ratio turns out to be 
virtually negligible, given the scatter, and all the data may be curve-fitted 

V 2with an equation of the form d / D = f (E / ). 

An incomplete set of independent quantities may destroy the analysis 

Assuming competence on the part of the analyst, the correctness of the 
dimensional analysis will depend entirely on whether a complete set of 
independent quantities Q1...Qn is in fact properly identified in step 1. Any 
complete set will yield correct results. If, however, the analysis is based on 
a set which omits even one independent quantity that affects the value of 
Qo, dimensional analysis will give erroneous results. 

Suppose that in our example we had omitted the sphere’s modulus of 
elasticity E in equation (3.9). Instead of equation (3.13), we would then 
have obtained the absurd result 

d 
= f ( ), (3.16)

D 

which implies that the maximum deformation depends on the ball’s 
Poisson ratio, but is independent of its elasticity, mass and approach 
velocity! This single error of omission is clearly fatal to the analysis. 

Superfluous independent quantities complicate the result unnecessarily 

Errors on the side of excess have a less traumatic effect. Over-
specification of independent variables does not destroy the analysis, but 
robs it of its power. For every superfluous independent quantity included 
in the set, there will be in the final dimensionless relationship a 
superfluous dimensionless similarity parameter. 

Suppose we argue (quite reasonably!) that the ball’s deformation upon 
impact will in general also depend on the local gravitational acceleration g 
(which we assume to be in the direction into the wall on which the impact 
occurs). This would change equation (3.13) to 
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d ⎛ E gD⎞ 
D 

= f ⎜ 
⎝ V 

2 , , ⎟ (3.17)
V 2 

⎠ 

where 
deformation is in fact insensitive to gravity, as we implicitly assumed 
earlier, equation (3.17) is “wrong” only in the sense that it suggests a 
dependence on g that is not noticeably there, and thus unnecessarily 
complicates our thinking. If by experimentation or computation we 
eventually discover that there exists a broad range of conditions where the 
similarity parameter involving g has in fact no measurable effect on d/D, 
and that the conditions of interest fall into this range6, we omit the 
parameter involving g and arrive at the same simpler conclusion as before, 
but only after due payment in effort for our lack of insight. 

2 is a dimensionless gravity. Under conditions where thegD V 

On the importance of simplifying assumptions 

The previous example illustrates an important point about most problems 
in dimensional analysis: Completeness in the set of independent variables 
is not an absolute matter, but depends on how we choose to circumscribe 
the problem. It is quite conceivable, for example, that there are “balls” 
whose deformation upon impact with a wall is gravity-dependent. This 
would be the case for balls with such low coefficient of elasticity, or large 
diameter, or low impact velocity, that their deformation at rest on a wall in 
the gravitational field would be significant compared with their 
deformation upon impact. When we say “the deformation does not depend 
on gravity”, we imply that we know with some confidence that there exist 
conditions where this is true, and choose to confine our attention to those 
conditions. 

If dimensional analysis depended on a truly complete identification of 
the independent variables that specify a given physical event, we would in 
most cases be reduced to impotence. Those familiar with the theory of 
chaos and the mechanics of many-body systems may sympathize with the 
view that the wind at a certain street corner in New York, say, may in 

6 To prove this with earthbound experimentation one would have to demonstrate that d/D 
remains constant when m, D and/or V are changed so as to vary gD/V2 while keeping 
ED3/mV2 constant. 
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some measure have been affected by the wing-beat of a butterfly in Brazil 
a month earlier. This kind of fastidiousness elicits a shrug from the 
pragmatist, who proceeds with a problem by saying: “Based on my 
experience as a scientist and engineer, I argue that this event should be 
controlled by the following complete set of independent variables. 
Assuming tentatively that I am correct, what does dimensional analysis 
tell me?” 

On choosing a complete set of independent variables 

Given what has been said above, how does one go about choosing a 
complete set of independent variables that define a particular problem? 

If we know the mathematical forms of all the equations and boundary 
(and initial) conditions that completely specify a particular type of process 
or event, one can deduce from them a complete set of independent 
parameters that define the event. This we do by simply examining all the 
equations and listing all the quantities whose values would have to be 
specified to define a particular event through all time. The set may include 
position and time, if the variable of interest depends on them, universal 
physical constants (e.g. gravitational constant, universal gas constant R, 
etc.), material properties (e.g. density, E, etc.) and all other quantities that 
appear not only in the equations but also in the boundary and initial 
conditions that determine the answer to the particular problem at hand. 
The last point is not as straightforward as it sounds: the question of what 
constitutes a well-posed mathematical problem is often difficult to answer 
in non-linear systems. 

If the equations and boundary conditions are not well known, as for 
example when one is trying to use dimensional analysis to help correlate 
experimental data for a complex phenomenon that is not well understood, 
one has to proceed by trial and error based on an (educated) guess about 
the physics of the problem at hand. Support for the analysis (and thus for 
the guess about the physics) may be obtained à posteriori by showing that 
all experimental data can indeed be accurately correlated in the 
dimensionless form suggested by the analysis. There should be sufficient 
data to be able to show that one has neither missed an important quantity 
nor included one that is irrelevant. 
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The result is independent of how one chooses a dimensionally independent 
subset 

Suppose we had chosen the dimensionally independent subset V, E, and 
instead of V, D and . Non-dimensionalizing d and D with combinations 
of V, E and , we might have obtained the result 

d 

( V 2 / E)1/3 = F 
D 

(mV 2 / E)1 / 3, 
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
(3.18) 

This can, however, be rewritten as 

d 

D 
= 

mV2 

ED3 

⎛ 
⎝ 
⎜ ⎞ 

⎠ 

1 / 3  

F 
ED3 

mV2 

⎛ 
⎝ 
⎜ ⎞ 

⎠ 

1 / 3  

, 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  = f  

ED3 

mV2 , 
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
(3.19) 

where F and f are different functions of their arguments. Equation (3.19) is 
of course identical to equation (3.13). 

The result is independent of the type of system of units 

The choice of system of units may affect the dimensions of physical 
quantities as well as the values of the physical constants that appear in the 
underlying physical laws. What effect, if any, does this have on 
dimensional analysis? Reason dictates there should be no effect on the 
“bottom line”, since the observer (the analyst) is free to choose or make up 
whatever system of units he wants, and his arbitrary choice should not 
affect the laws of physics. 

Consider our example of the dyed ball, but viewed in terms of a 
system of units like the British Engineering System (type3 in table 2.2), 
where mass, length, time and  force are taken as base units. In such a 
system Newton’s law reads F= cma, where c is a physical constant with 
dimension Ft2m-1 L-1. This affects the very first step of the analysis. Since 
the impact process is controlled by Newton’s law, which now contains the 
constant c, the value of which must be specified, we now have 

d = d(V ,D, E ,m, ,c). (3.20) 



49


The number of independent variable (n=6) has increased by one. The 
dimensions of the variable are now: 

independent: [V]=Lt-1 

[D]=L 
[E]=FL-2 (3.21) 
[m]=M 
[ ]=0 
[c]=Ft2M-1L-1 

dependent: [d]=L 

The quantities V, D, m and c comprise a convenient dimensionally 
independent subset. The number of this subset has also increased by one 
(k=4). The dimensions of the remaining quantities can be expressed in 
terms of these four as 

[d]=[D]

[E]=[cV2D-3] (3.22)

[ ]=0 

and the final result of the analysis is 

d 
= f 

⎛⎜ ED3 ⎞⎟ (3.23)
D ⎝ cmV 2

, 
⎠ 

This differs from our previous result, equation (3.13), only in that the 
physical constant c appears in the non-dimensionalization of E. Equations 
(3.13) and (3.23) are, however, functionally identical. Since n-k=2 in both 
cases, both analyses imply that d/D depends on two dimensionless 
parameters, and a dimensionless E. It is just that in the second system of 
units, E must be non-dimensionalized with cmV2/D3 instead of mV2/D3 , 
since the latter no longer has the same dimension as E. In short, the forms 
of some of the dimensional parameters may change with the system of 
units, but the physical content of analysis remains invariant. This is, of 
course, as we expected; the choice of system of units is arbitrary, and 
should not affect the physical “bottom line.” 
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4. Dimensional Analysis in Problems where Some
 Independent Quantities Have Fixed Values 

Engineering practice often involves problems where some of the quantities 
that define the problem have the same fixed values in all the applications 
being considered. As a simple example, suppose we are interested in 
determining the hydrodynamic drag force D on a fully submerged, very 
long, neutrally buoyant cable being dragged behind a ship, and propose to 
do this by making small scale experiments in a water tunnel. Basic fluid 
mechanics tells us that, barring surface roughness effects, the drag force 
should be completely determined by the cable’s length L and diameter d, 
the ship’s (or water’s) velocity V, and the water’s density and viscosity 

. Three of these five quantities are dimensionally independent, and 
dimensional analysis (or Buckingham’s pi-theorem) tells us that an 
appropriately defined dimensionless drag is a function of n-k=2 
dimensionless similarity parameters. One way of writing this relationship 
is 

D 
V 2L2 = f Re, 

d 
L 

⎛ 
⎝ 

⎞ 
⎠ (4.1) 

where 

Re = 
VL 

4.2) 

is a Reynolds number based on cable length and d/L is the cable’s 
“fineness coefficient,” which defines its geometry. Equation (4.1) is a 
general relationship for the cable-towing problem as stated. 

We observe, however, that the density and viscosity have essentially 
the same values⎯those of sea water at its typical temperature⎯in all the 
applications that are of interest. The number of quantities that actually 
vary from case to case are thus actually three, not five. 

The question arises, does this lead to a simplification of the similarity 
law expressed by equation (4.1), that is, to a reduction in the number of 
independent similarity parameters? Simply omitting the quantities that 
have fixed values and performing dimensional analysis on the rest cannot 
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answer this question9. Dimensional analysis must be based on a complete 
set of independent quantities that determine the quantity of interest. All the 
quantities whose values determine the quantity of interest must be 
included, regardless of whether some of them happen to be the same 
values in the problems that are of interest. As we have seen in section 3, 
omitting even one independent variable can fatally damage the analysis. 

The general question is the following: What reduction, if any, can be 
obtained in the number of similarity parameters if a certain number of the 
independent quantities that define the problem always have the same fixed 
values? This can be answered by the following analysis. 

Suppose we are interested in a quantity Q that is completely 
determined by the values of n independent quantities Qi, of which nF are 
held at fixed values in all the cases that concern us. Let the quantities that 
may vary be the first (n-nF)  of Qi, and designate the nF quantities with 
fixed values by Fi: 

Q = f (Q1,Q2,..,Qn− nF 
;F1,F2,..,FkF 

,FkF +1,FkF +2,.., F ) (4.3)nF 

Choose a complete, dimensionally independent subset of the set Fi. Let 
these be the first kF of the fixed set, as indicated in equation (4.3). Using 
this subset, non-dimensionalize the remaining (nF-kF) fixed quantities and 
write the relationship (4.3) in the alternative form 

∗ ∗ ∗ Q = f (Q1,Q2,...,Qn− nF 
;F1,F2,...,FkF 

,F ,F ,..., FnF 
) (4.4)

k+1 k +1 

where the asterisked indicate dimensionless quantities involving only 
quantities with fixed values. These dimensionless quantities thus have the 
same fixed values  in the cases that concern us. For these cases, therefore, 
we can write (4.4) as 

Q = f (Q1,Q2,...,Qn− nF 
;F1,F2,...,FkF 

) (4.5) 

The value of Q is thus completely determined by a set of n-nF+kF 

independent quantities consisting of those dependent quantities that are 

9 Were we to simply omit the density and viscosity in the present problem, for example, 
we would imply a relationship D=f(L,h,V) which is not dimensionally homogeneous and 
therefore unacceptable. (There is no way of writing the dimension of force in terms of 
just length and velocity). 
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not fixed plus the dimensionally independent subset of the fixed 
quantities. 

Now perform dimensional analysis on the relationship in equation 
(4.5). First, select from the set of n-nF+kF independent quantities in 
equation (4.5) a complete, dimensionally independent subset of k 
quantities. Let this subset be the first k of the quantities. Since equation 
(4.5) contains all the variable independent quantities plus the 
dimensionally independent subset of the fixed (independent) quantities, 
the subset we thus obtain is also complete, dimensionally independent 
subset for the whole original set of n quantities. 

According to equation (4.5), Q depends on n-nF+kF independent 
variables, of which k are independent. Dimensional analysis thus yields 
the result 

∗ Q = f (Π1,Π2,...,ΠN ) (4.6) 
where 

N = (n − k) − (nF − kF ) . (4.7) 

We have arrived at the following theorem: 

Theorem 

If a quantity Q is completely determined by a set of n 
independent quantities, of which k are dimensionally 
independent, and if nF of these quantities have fixed values in 
all the cases being considered, a number kF of these being 
dimensionally independent, then a suitable dimensionless Q 
will be completely determined by (n-k)-(nF-kF) dimensionless 
similarity parameters. 

In other words, the fact that a number nF of the quantities always have 
fixed values reduces the number of independent similarity parameters by 
(nF-kF). This theorem is a generalization of Buckingham’s -theorem, and
reduces to it when nF=0. 

Returning to the cable-towing example, in which nF=2 and kF=2, we 
now see immediately that no gain in similarity (no reduction in the number 
of similarity parameters) accrues from the fact that the viscosity and 
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density are essentially the same in all the applications that interest us. The 
similarity law equation (4.1) cannot be simplified. 

Simplification occurs only when some of the fixed quantities are 
dimensionally dependent on the rest. 
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