
Chapter 1


Time Dependent Mechanical 
Behavior of Hydrated Biological 
Tissues 

1.1	 Swelling and Deformational Behavior of 
Tissues: Experimental Observations 

Characterization of the swelling of hydrated tissues is often a critical link in under­
standing the role of individual molecular constituents in the tissue’s overall structure 
and mechanical behavior. Measurement of the kinetics of swelling can also help 
to delineate the mechanisms and rate-limiting processes that relate molecular level 
structure to macro-continuum biomechanics of tissues. 

It is known that enthalpic and entropic effects, long-range electrostatic forces, 
as well as specific intra- and intermolecular crosslinkages, are among the interactions 
that can significantly affect the rheological behavior of biological tissues. For exam­
ple, proteoglycans (PG) and their ionized glycosaminoglycan (GAG) constituents are 
primarily responsible for the osmotic swelling pressures of connective tissues at phys­
iological pH. This swelling is crucial to the tissue’s ability to withstand compressive 
mechanical loads in vivo. Urban et al1 have pointed out that PG concentrations are 
higher in cartilagenous tissues than other connective tissues: PG account for ∼5% of 
the net wet weight in human femoral head cartilage and higher in the nucleus of the 
disc, compared to ∼0.1 – 1% in tendon and the loose connective tissue of umbilical 
cord (Wharton’s jelly). Therefore, cartilagenous tissue would be expected to have a 

1Urban, J.P.G., Maroudas, A., Bayliss, M.T., and Dillin, J., Biorheology, 16, 447, 1979. 
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higher osmotic swelling pressure. However, when excised specimens of articular carti­
lage, disc, and umbilical cord are placed in identical physiological saline, the cartilage 
swells by only 1-2%,2 the disc may swell by 100% (annulus) to 250% (nucleus)2 and 
native umbilical cord strips may well swell 50-100% beyond their in vivo wet weight. 
Thus, it is apparent that the content of fixed charge groups alone is only one of many 
factors that controls tissue swelling. The size and arrangement of collagen fibrils, 
chemical crosslinkages, mechanical entanglements, and other factors all play a role in 
determining the ultrastructure and equilibrium volume of a given tissue. 

1.1.1	 Measurement of Non-Equilibrium Tissue Volumetric 
Changes 

While measurement of equilibrium hydration of tissues can lead to significant insight 
into tissue ultrastructure, non-equilibrium experiments and models are essential to 
the understanding of the mechanism of tissue volumetric changes and the chemical, 
mechanical and electromechanical rate processes that may govern transient tissue de­
formations. Such experiments have led to new information regarding the interaction 
between macromolecular constituents within a tissue. Non-equilibrium swelling be­
havior has been studied extensively in cornea,3,4,5 tendon and reconstituted collagen 
fibers,6,7, and many other tissues. 

When the bath composition (e.g., ion concentrations, pH, etc.) of a specimen 
is altered, several nonequilibrium rate processes may occur simultaneously. The ki­
netics of each rate process can be approximated by a time constant associated with 
a linearized model. Important rate processes and their associated time constants 
include: 

1. Diffusion of mobile ions within the matrix: τdiff ∼ δ2/Di; Chemical diffusion ki­
netics can be characterized by a time constant proportional to the square of the 
specimen thickness δ and inversely proportional to ion diffusivity Di. 8 . 

2. Diffusion-limited binding of ions to matrix macromolecular sites: 

2Maroudas, A., The Joints and Synovial Fluid, Vol. II, Sokoloff, L., Ed, Academic Press, New 
York, 1980, 240 

3Elliott, G.F., Goodfellow, J.M., and Woolgar, A.E., J. Physiol., 298, 453, 1980. 
4Hedbys, B.O., Mishima, S., and Maurice, D.M., Exp. Eye Res. 2, 99, 1963. 
5Hodson, S., Wigham, C., Williams, L., Mayes, K.R., and Graham, M.V., Exp. Eye Res., 32, 

353, 1981. 
6Nussbaum, J.H., and Grodzinsky, A.J., J. Membrane Science, 8, 193, 1981. 
7Lai, W.M., Hou, J.S., Mow, V.C., J Biomechanical Eng., 113, 245, 1991 
8Crank,J.,The Mathematics of diffusion,2nd ed., Clarendon Press, Oxford,1975. 
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τdr ≡ (τdiff )[1 + R]; Diffusion-limited chemical reactions can significantly im­
pede the transport of mobile species into the matrix, as represented by the 
parameter R9 . 

3. Readjustment of local (double layer) electric fields and forces: τch.rel. �/σ;∼
Readjustment of local electric fields within the matrix, after an instantaneous 
change in the ionic content of the interstitial fluid, is proportional to the ratio 
of the interstitial fluid permittivity � to its conductivity σ. 10 τch.rel. varies from 
∼ 10−5 − 10−6 sec in bone,11 with its relatively low fluid content, to 10−9 sec in 
tendon24 and cartilage.8 Charge relaxation times are so short that this process 
will never be rate-limiting for swelling of macroscopic tissues having dimensions 
δ much greater than a Debye length (∼ 1nm)! 

4. Mechanical readjustment (swelling) of the tissue matrix:	 τmatrix ∼ δ2/(Hk); 
This process involves elastic reconfiguration of the matrix molecules simultane­
ously with relative fluid flow into or out of the matrix. The mechanical swelling 
of polymer gels12 and connective tissues such as cartilage13 and cornea14 has 
been described in the small strain limit by a time constant proportional to the 
hydraulic permeability k and the elastic modulus H (tensile, compressive, etc.) 
of the matrix. When the intrinsic viscoelastic behavior of the solid matrix is 
important, yet another time constant would be appropriate. 

5. Electrodiffusion:	 τed ≡ τdiff [1 + (Eoδ/2πVT )
2]−1; When an electric field Eo is 

applied across a tissue or a membrane of thickness δ, τed is the time needed for 
the establishment of a new equilibrium profile of mobile ion concentration within 
the tissue15 . The new concentration profile represents a competition between 
ion migration through an applied voltage drop Eoδ and ion diffusion represented 
by the ”thermal voltage” VT ≡ RT /F (assuming no binding reactions occur). 

A comparison of the magnitudes of the above time constants can give valuable 
insight into the mechanism that controls swelling in different tissues. Based upon 
published experimental data and theoretical observations, The major conclusions are: 

1. In relatively high modulus, soft connective tissues such as tendon and carti­
lage it has been discovered that τmatrix � τdiff . That is, electromechanical and 

9Crank,J.,The Mathematics of diffusion,2nd ed., Clarendon Press, Oxford,1975. 
10Stratton, J.A., Electromagnetic Theory, McGraw-Hill, New York, 1941 
11Johnson, M.W., Chakkalakal, R.A., Harper, R.A., and Katz, J.L., J. Biomech., 13, 437, 1980. 
12Tanaka, T. and Fillmore, D.J., J. Chem. Phys., 70, 1214, 1979. 
13Mow, V.C., Kuei, S.C., Lai, W.M., and Armstrong, C.G., J. Biomech. Eng., 192, 73, 1980 
14Friedman, M.H., J. Theor. Biol., 30, 93, 1971. 
15Arndt, R.A. and Roper, L.D., Physical Biological Sciences Misc., Blacksburg, Va. 
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osmotic swelling (deswelling) induced by changes in bath neutral salt concen­
tration occurs at least as rapidly as chemical diffusion. It was concluded that 
salt diffusion appeared to be the rate-limiting mechanism for swelling in such 
experiments. 

2. In connective tissues with a lower modulus (e.g corneal stroma) and/or lower 
permeability, measurements have shown that Hk � Di (τdiff � τmatrix)

18,19,20,21 . 
The same would be expected for the nucleus of the disc, although this author 
has not yet seen such data. For tissues in which τdiff � τmatrix, changes in 
external bath concentration will chemically equilibrate with the interstitial fluid 
much faster than subsequent mechanical swelling (deswelling). In such cases, 
the observed swelling kinetics provides a direct measure of the product of the 
tissue’s elastic modulus and hydraulic permeability, as long as solid phase matrix 
viscoelasticity is not important. 

3. Conversely, for tissues in which	 τmatrix � τdiff , free swelling kinetics are dom­
inated by chemical processes (i.e. the slowest, rate-limiting process). In such 
cases, the measured swelling kinetics may be invaluable as a quantitative, non­
destructive measure of certain biochemical properties, such as diffusion-limited 
binding (τdr) of Ca++ and other ions to connective tissues. 

4. The kinetics of swelling brought about by electrodiffusion-induced changes in 
intra-tissue salt concentration should be governed by τed as long as τmatrix � τed. 
This was recently demonstrated with collagen membranes: a sinusoidal trans­
membrane field produced sinusoidal changes in isometric stress whose frequency 
response correlated with electrodiffusion-controlled variations in intramembrane 
NaCl concentration. 

A final caution concerning swelling experiments is necessary. Prolonged 
swelling of connective tissues may lead to proteoglycan loss and other degeneration 
processes, even when enzymatic inhibitors are used. A micrograph of corneal stroma 
with edema (Chapter 1.4) shows an even more drastic matrix degradation. For tissues 
such as disc, cornea and umbilical cord which may undergo large changes in hydration, 
the measured swelling kinetics may be dominated by artifactual tissue breakdown. In 
such cases, the H and k predicted from such data would have little meaning. 

1.2	 Linear Poroelastic Behavior of Tissues: 
Theories and Experiments 

We have seen that the nonequilibirum rheological behavior of biological tissues is the 
result of complex interactions involving both the interstitial fluid and the extracel­
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lular solid matrix constituents. In some cases, single phase viscoelastic models (e.g., 
lumped parameter spring/dashpot models) may be able to characterize tissue me­
chanics within limited ranges of stress, strain, and time (frequency). For example, 
cyclic testing of tendons and ligaments in tension has been described by the quasi-
linear viscoelastic theory of Fung [Woo et al., 1981, Y.C. Fung, 1982]. Tensile testing 
of connective tissues is sometimes dominated by the solid collagen fiber constituents 
and, therefore, flow of water may be somewhat less important. Similarly, the dynamic 
shear behavior of soft tissues may involve little or now flow of interstitial water rel­
ative to the solid matrix, especially at very small strains. Hence, any “viscoelastic” 
behavior that may be observed may be ascribed to the solid phase of the tissue. 

However, the compressional behavior of hydrated soft tissues must necessarily 
involve flow of fluid through the extracellular matrix. The resulting frictional inter­
actions between fluid and solid phases lead to the remarkably different rheological 
properties of such tissues. We will see that the time dependent “poroelastic” dis­
placement profile is no longer uniform when relative fluid flow is important, as was 
assumed for the case of purely solid phase viscoelasticity (see Chapter 1.2). Thus, in 
addition to a temporal phase delay between stress and strain at any point within the 
tissue, there is also a spatial phase delay between the displacement from one point in 
the tissue to the next. That is, the displacement profile within the tissue is found, 
in general, to be described by the solution to a partial differential equation in space 
and time. 

Various poroelastic and mixture theories have been successfully applied to 
describe the deformational behavior of soft connective tissues, gels, geophysical ma­
terials, soils, and other materials composed of a multiple of fluid and solid phases. 
The following discussion will focus on the fundamental laws that can be combined to 
formulate a general model for the mechanical and electromechanical behavior of soft 
tissues. In addition, the influence of the chemical environment on the stress-strain 
and material properties of such tissues will be included. For simplicity, we focus 
on isotropic, homogeneous, linear material behavior and, to exemplify a class of ap­
proaches, utilize a simple poroelastic approach similar to that of Biot and coworkers. 

1.2.1 Equillibrium Total Stress Constitutive Relation 

In many tissues, there are distinct molecular constituents that are separately respon­
sible for different components of the total swelling stress. For example, in articular 
cartilage at physiological pH, it is accepted that the repulsive interactions between the 
charge groups of the proteoglycan aggregates provide the positive swelling force, while 
the elastic recoil of the stretched collagen fibrous network maintains tissue integrity 
(Maroudas, 1979). In what follows, we develop a constitutive relation for the total 
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swelling stress. Experiments will also be described that characterize the contribution 
of electrical forces to the material properties that make up this constitutive relation. 

In general, the total swelling stress is made up of several components that 
result from distinct physical interactions (Flory, 1953), including: 

1.	 a component due to stretching of the marcomolecular chains comprising the in­
terconnected solid matrix. This component opposes swelling and its magnitude 
increases as swelling increases. 

2.	 a component due to electrostatic (Donnan osmotic) interactions. This com­
ponent can be interpreted at the molecular level as the result of double layer 
repulsive forces between charged constituents of the tissue. Alternatively, at 
the macro-continuum level, this component can be interpreted as an osmotic 
pressure resulting from the increased concentration of counterions that must be 
present in the tissue to preserve electroneutrality. These are one and the same 
phenomena. The magnitude of this component of the swelling stress decreases 
with increased swelling, increased external ion concentrations, or decreased fixed 
charge density. 

3.	 a component due to interactions between the matrix macromolecules and the 
solvent. This component accounts for the affinity between the matrix and the 
solvent. For “good” solvents, the matrix tends to imbibe fluid and increase 
swelling. Similarly, the matrix tends to resist swelling in “poor” solvents. 

4.	 a component due to the thermal motion of the matrix macromolecular segments, 
often referred to as polymer excluded volume effects. This component tends to 
swell the network, and its magnitude decreases as swelling increases. 

In developing a constitutive law for total stress, we will include on tissue 
swelling behavior that is mediated by electrical interactions between the charged 
constituents of the solid tissue matrix. Changing ion concentrations in the tissue 
bathing solution alters the electrical repulsive forces between these constitutents by 
changing the electrical interaction distance (Debye length) within the tissue. In an 
experiment in which the deformation is held constant, the altered electrical repulsive 
forces give rise to a change in swelling stress and a concomitant change in the measured 
stress required to keep the deformation constant. Conversely, when the stress on the 
tissue is held constant, a change in salt concentration results in a change in tissue 
deformation as the charged constituents alter their relative spacing in response to the 
modified repulsive forces. 

The total stress Tij for a homogeneous, isotropic linear tissue sample in equi­
librium can be expressed by a modified form of the generalized Hooke’s law in terms 
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of the strain �ij , concentration dependent Lame constants G(c) and λ(c) and the 
chemical stress β(c) as 

Tij = 2G(c)�ij + {λ(c)�kk − β(c)} δij (1) 

where the chemical stress β(c) represents the chemical analog of the thermal stress in 
the thermoelasticity. It is postulated in Eq. (1) that three concentration dependent 
material properties are required to completely describe the chemical modulation of 
swelling behavior for such a homogeneous, isotropic tissue. (To account for tissue 
anisotropy, Eq. (1) must be generalized and β may vary with direction). 

For the uniaxial confined compression geometry of Figure 8.2.1, Eq. (1) can 
be written in terms of two concentration dependent material parameters as 

σ = −Tzz = −[2G(c) + λ(c)]�zz + β(c) = H(c)� + β(c) (2) 

where H = 2G + λ is the bulk longitudinal modulus (confined compression modulus), 
and the uniaxial stress σ and strain �(= −�zz ) are defined positive in compression. For 
a homogeneous sample in equilibrium at concentration c, a mechanical stress equal 
to the swelling stress p(c, �) ≡ H(c)� + β(c) is required to keep the tissue at a given 
thickness in the configuration of Figure 8.2.1. 

The bulk longitudinal modulus H can be measured at any concentration co by 
applying an increment in compressive stress, Δσ (strain Δ�), as shown in Figure 8.2.2. 
H varies with salt concentration because the resistance of the tissue to deformation 
depends on the extent of electrical interaction between the charged macromolecules 
that comprise the solid tissue matrix. 

The origin of the concentration dependent chemical stress β can be best un­
derstood in the following way. A tissue sample in equilibrium with a bath whose salt 
concentration is large enough to shield electrical interactions is used to define the 
reference thickness for the sample, as shown in Figure 8.2.3a. When the bath concen­
tration is decreased, electrical repulsive forces between the charged constituents of the 
solid matrix are increased. When the tissue sample is allowed to swell in the thickness 
direction, the thickness of the sample increases (Figure 8.2.3b), thereby stretching the 
constraining chains of the matrix. Equilibrium is reached when the increased electrical 
repulsive forces are balanced by the constraining force of the stretched network. The 
stress σ required to compress the sample back to its strain free state (Figure 8.2.3c) 
as defined by the reference thickness λref , defines the chemical stress β(c). β is the 
stress that would be measured in equilibrium if the sample was held at its reference 
thickness while the salt concentration was decreased. 
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An example of show data for the NaCl concentration dependence of H and β, 
measured for bovine corneal stroma and articular cartilage is shown in Figure 8.2.4a,b 
(Eisenberg and Grodzinsky, 1985). The modulus of bovine cartilage disks in uniax­
ial confined compression was found to be 1.1 MPa at 0.005 M NaCl, 0.55 MPa at 
0.15 M NaCl, and 0.27 MPa at 1.0 M NaCl. The observed decrease in the modulus 
with increased concentration can be attributed to the electrostatic shielding of the 
proteoglycan charge groups by counterions. The relative insensitivity of H to changes 
in NaCl concentration at the highest concentrations tested suggests that electrostatic 
and Donnan osmotic forces are almost completely shielded in these specimens in 1.0 M 
NaCl. By comparing the modulus at 0.15 M NaCl to the modulus at 1.0 M NaCl it 
can be concluded that electrostatic repulsive interactions account for at least half of 
the modulus at physiological ionic strength in bovine articular cartilage. 

The chemical stress for bovine articular cartilage shows a more rapid decrease 
with concentration. Here again, the electrostatic shielding effect of increased NaCl 
concentration results in less stress being required to keep the tissue at its reference 
volume. The chemical stress is even more important to the swelling behavior of bovine 
corneal stroma for the strain levels applied in this study, as can be seen by compar­
ing the modulus and chemical stress components of corneal swelling stress. This is 
consistent with the fact that corneal stroma is known to swell for more extensively 
than articular cartilage (Hedbys and Dohlman, 1963, and Maroudas, 1980). 

Based on Donnan osmotic theory alone, one would expect that changes in the 
electrostatic contribution to H and β would begin to decrease significantly as the 
concentration of the bath exceeded the average fixed charge density of the tissue. 
(The charge density of bovine femoropatellar groove cartilage specimens is about -
0.2 M while that of bovine corneal stroma is - 0.05 M). While the data of Figure 8.2.4 
qualitatively supports this notion, it is apparent that the concentration dependence 
is more complex. The difference in the concentration dependence of H and β for a 
given tissue may be the consequence of tissue ultrastructure. 

Similarly, the marked difference in the material properties H and β of cartilage 
and corneal stroma cannot be interpreted solely on the basis of fixed charge density. 
While corneal stroma has about three times fixed charge than articular cartilage, 
corneal stroma specimens swell far more than cartilage under no load conditions. 
This due primarily to the differences in the morphology and ultrastructure of the 
extracellular matrix of these tissues. In normal articular cartilage, the tendency of 
the proteoglycans to hydrate is well constrained by the collagen network. In corneal 
stroma, the proteoglycans help to organize collagen fibrils in a precise parallel array 
within each 2 µm thick lamella, but staggered in orientation from one lamella to the 
next within the ∼ 800µm stroma. The resulting highly organized collagen structure 
helps to optimize corneal transparency and prevents radial swelling (in the plane 
of the cornea), but allows such significant swelling in the thickness direction that 
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an active endothelial cell pump is required in viiivo to express water and thereby 
maintain normal corneal hydration (Mishima and Kuda, 1967). 

1.2.2 Darcy’s Law for Fluid Flow in Porous Media 

We assume that the fluid is incompressible and intrinsically inviscid; frictional (vis­
cous) interactions between the fluid and solid matrix in the tissue are described by 
Darcy’s Law, which relates the fluid flux to the gradient in total fluid pressure at 
any point within the material. Because the tissue is charged, osmotic (π) as well as 
hydrostatic (P) pressure gradients must be included in Darcy’s law. In equilibrium, 
when there is no flow anywhere inside the tissue or across the tissue/bath interface, 
(P − π)tissue = (Po − πo), where Po and πo are the hydrostatic and osmotic pressures in 
the external bath. The hydrostatic pressure Po can be set equal to zero without loss 
of generality (free draining). However, the osmotic pressure πo cannot be set to zero 
for finite bath concentrations. Because of this asymmetry between the hydrostatic 
pressure P and the osmotic pressure π, it is convenient to define the osmotic pressure 
difference. 

Δπ(z, t) ≡ π(z, t) − πo (3) 

Within the tissue, fluid flow is related to the gradient in the pressure difference 
(P − Δπ) (Katchalsky and Curran, 1965). With the fluid pressure defined as Pf = 
(P − Δπ), the fluid velocity U is related to the gradient in Pf by Darcy’s law: 

U = −k�Pf (4) 

¯where U is the total area averaged relative flow of fluid with respect to the solid 
and k is the tissue hydraulic permability. Implicit to the fluid flow law of Eq. (4) is 
that inertial effects are negligible, a reasonable assumption for the known fluid mass 
density, time rates of change (frequencies), and frictional damping forces that are of 
interest. For the case where inertia is important, Darcy’s law would be replaced by a 
more general statement of conservation of momentum for the fluid (for example, see 
Friedman, 1970, 1971). 
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1.2.3 Nonequilibrium Stress-Strain Constitutive Law 

Under nonequilibrium conditions, a fluid pressure term must be added to Eq. (1) to 
account for the effect of fluid flow on the total Tij . The total stress Tij can then be 
expressed as 

Tij = 2G(c)�ij + {λ(c)�kk − β(c) − Pf } δij (5) 

This expression is analogous to the general relations given by Rice and Cleary 
and Biot for porous media in the limit of incompressible fluid and solid constituents, 
although the chemical stress β and the chemical dependence of the material constants 
G and λ were not included in those developments. The total stress Tij is also equiv­

ij of the solid and Tij of the fluid in the mixture model by Mow alent to the sum of T s f 

et al (1980). 

For the uniaxial confined compression geometry of Figure 8.2.1, Eq. (2) be­
comes 

σ = HA(c)� + β(c) + Pf (6) 

1.2.4 Conservation of Mass 

Conservation of mass for the case of incompressible solid and fluid consitutents takes 
the form 

= 0 (7)� · vf + α� · vs 

where α is the solid volume to liquid volume ration (Vs/Vf ) and vf and vs are the 
local (lab frame) velocities of the fluid and solid constituents defined in terms of the 
relative velocity U and the porosity φ as: 

U = (vf − vs)φ (8) 

In Eqs. (7) and (8), α and φ are related by φ = 1/(1 + α), since porosity is 
just Vf /(Vf + Vs). 

In the confined uniaxial geometry of Figure 8.2.1, Eq. (7) becomes 
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∂U ∂� 
= (9)

∂z ∂t 

Since the strain � = −∂u/∂z, with solid displacement u related to vs by vs = 
∂u/∂t, Eq. (9) reduces further for the case when fluid is forced to move in only one 
direction opposite to the motion of the solid. For example, with an impermeable 
bottom surface at z = δ in Figure 8.2.1, compression of the tissue forces fluid to move 
upward such that equation Eq. (9) takes the form U = −∂u/∂t 

In the absence of inertial effects, conservation of momentum requires that 

∂Tij /∂xj = 0 (10) 

This is an excellent approximation for frequencies and strain rates of physio­
logical interest. In uniaxial geometry, Eq. (10) becomes 

∂σ 
= 0 (11)

∂z 

Eqs. (4) and (11) describe the relation between the total stress, fluid flow, 
displacement and swelling stress when the material properties are known. When the 
material properties depend on the ionic concentrations, the kinetics of the transition 
in the material properties induced by a change in the concentration of the external 
bath must also be examined in order to describe the evolution of the mechanical 
response. This will be described in a later section. 

1.2.5 Summary 

For the case of chemically homogeneous systems (no chemical transport or gradients 
in chemical species), Eqs. (4), (6), (9), and (11) constitute a complete description 
of tissue mechanics in terms of the unknowns σ, �, U , and Pf in the uniaxial geom­
etry of Figure 8.2.1. By extension, Eqs. (4), (5), (7), and (10) describe prorelastic 
deformations and flows in three dimensions. When the material properties (e.g., H, 
k, and β) depend on chemical environment, constitutive laws for the concentration 
dependence must be derived or measured (e.g., Figure 8.2.4). 

In the next sections, we use the simple poroelastic model outlined above in a 
series of examples to describe the nonuniform deformation response and the dynamic 
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mechanical stiffness of hydrated biological tissues. We then extend the model to incor­
porate electrokinetic transduction interactions such as deformation induced streaming 
potentials and electrical current-induced mechanical stress. Finally, we compare some 
experimental results and theoretical predictions for the manner in which changes in 
ionic environment lead to altered tissue stiffness in compression and tension. 

1.3	 Hydraulic Permeability, Dynamic Stiffness, 
and Electrokinetic Behavior of Tissues 
Modeled as Hydrated Poroelastic Media 

1.3.1	 Macrocontinuum Approaches 

Fluid flow and electrokinetic transduction in biological tissues and natural and syn­
thetic membranes have been modeled by non-equilibrium thermodynamic relations 
cast in the lumped parameter form of Eq. (1) or in the continuum form of Eq. (2). 
Eq. (1) relates one dimensional fluid and current flows to transmembrane pressure and 
potential drops (see Chapter 1.4), while Eq. (2) applies to the total area-averaged, 
one dimensional flows and pressure and potential gradients within the tissue: 

⎡
⎢⎣ 

�n · (�v − �vm) 

�n · J�� 

⎡
⎢⎣ 

⎤
⎥⎦ = 

L11 L12 

L21 L22 

⎡
⎢⎣ 

⎤
⎥⎦ 

ΔP


ΔV


⎤
⎥⎦ (1)


∂P ∂V 
Uz (z) = −k11 

∂z 
+ k12 

∂z 
(2) 

∂P ∂V 
Jz (z) = +k21 

∂z 
− k22 

∂z 

Eqs. (1) and (2) apply to systems having negligible chemical concentration 
gradients. The kij of (2) are intrinsic material properties that depend on the electrical, 
mechanical and chemical properties of the tissue matrix. The matrix is assumed 
to be isotropic, but the kij may vary with z for the case of nonuniform material. 
For homogeneous, isotropic materials the phenomenological coefficients kij and Lij 

are related by the specimen thickness δ: δLij = kij . The electrokinetic coupling 
coefficients may be modeled in terms of a macrocontinuum fixed charge density, k12 = 
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k21 = ρmk (see Problem ??), where k = (k11 − [k12k21/k22]) is the open-circuit Darcy 
permeability, or in terms of a microcontinuum surface charge or ζ (zeta)-potential 
associated with individual matrix macromolecules. 

Eqs. (1) and (2) constitute a phenomenological description of electrokinetic 
transduction, including streaming potentials (−k21/k22) first and second electroos­
motic flow (k12/k22 and k12, respectively), and streaming current (k21/k11), as sum­
marized by Katchalsky and Curran, (1965). 

Maroudas (1969) was the first to measure steady-state streaming potential in 
articular cartilage, generated by a steady pressure difference applied across 400µm 
slices of tissue. She used a macroscopic, homogeneous fixed charge theory related 
to Eq. (1) to calculate the average charge density within the slab from the data. 
Experimental problems in such a steady-state measurement included concentration 
potentials due to stagnant films, and electrode offset drift. Subsequently, Maroudas 
suggested that a cation tracer method was simpler and more accurate. 

It is not always appreciated that Eqs. (1) and (2) may be applied to time vary­
ing “quasistatic” forces and flows, as well as to the steady state. Several investigators 
have measured non-steady deformation-induced streaming potentials in connective 
tissues and blood vessel walls. A model of the form (2) can be fit to the data of 
experiments in sinusoidal steady state compression over a wide frequency range, as 
will be discussed below. 

The electrokinetic equations (1) and (2) also demonstrate the very important 
influence of tissue fixed charge groups on hydraulic permeability. When there is no 
potential gradient (∂V /∂z = 0) the permeability is just k11 from Eq. (2a), and is 
called the “short circuit permeability”. When fluid flow induces streaming potentials 
so that (∂V /∂z) is not zero, then the permeability under open circuit conditions is 

[k11 − (k12k21/k22)], which can be derived from Eq. (2a,b) with J = 0. Thek ≡
backflow term (k12k21/k22) represents the electrical force exerted by the streaming 
potential (∂V /∂z) on the space entrained by the fluid phase, intending to reduce the 
flow and hence lower the effective permeability. The streaming potential field can 
be suppressed by increasing the salt concentration of the interstitial fluid. This fact 
provides an experimental method for testing the significance of the backflow term. 

1.3.2 Creep and Stress Relaxation Revisited 

(A comparison of single phase lumped element viscoelastic models with the predictions 
of poroelastic models) 
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1.3.3	 Deformation Induced Streaming Potentials In 
Hydrated Tissues 

The Streaming Potential-Versus-Piezoelectricity Controversy 

Yasuda16 first discovered that electrical potentials are generated when bone 
is bent. This property of bone was termed a piezoelectric effect.17 Several extensive 
reviews18,19, have summarized the research on this fundamental electromechanical 
property and its possible function in growth and remodeling of tissues. 

The piezoelectric mechanism received wide attention. Theories were derived 
for piezoelectricity in dry bone, in which the piezoelectric response was ascribed to 
the collagen phase since the crystal structure of the mineral hydroxyapetite is not 
of the class of piezoelectrically active materials.20 Experiments characterized the 
dependence of deformation induced potentials in dry bone on frequency (1-1000 Hz), 
and the dependence on relative humidity in moist bone. 

Investigators began to question whether the piezoelectric mechanism described 
the observed electromechanical behavior of wet bone under physiological conditions. 
The relatively fast dielectric charge relaxation times, estimated to be less than 50µsec, 
were not compatible with observations of slow decay rates for potentials observed 
in wet bone.73 (Deformation-induced polarization charge would be screened by the 
ions of the interstitial fluid to within a few Debye lengths (∼ 1nm) within a few 
charge relaxation time constants). It was then suggested that a streaming potential 
mechanism might be compatible with experimental data in wet bone. The effect of 
the interstitial fluid’s concentration of NaCl, CaCl2, and HCl on the magnitude and 
sign of steady-flow-induced potentials, and on potentials induced in bending beam 
and sinusoidal four-point bending geometries led research groups to suggest that a 
streaming potential mechanism is dominant. Changes in fluid viscosity also affected 
the potential in a manner consistent with a streaming mechanism. 

Figure 8.3.1 depicts the streaming potential mechanism in terms of a macro-
continuum (a) and a microcontinuum (b) picture. The material contains fixed nega­
tive charge groups and an interstitial fluid containing an excess of positive counterions 
so that electroneutrality is preserved. When a solid Ag/AgCl reference electrode com­

16Yasuda, I., J. Kyoto Pref. Univ. Med., 53, 352, 1953. 
17Fukada, E., Adv. Biophys., 6, 121, 1974. 
18Bassett, C.A.L., The Biochemistry and Physiology of Bone,Vol. III, Bourne, G.H., Ed., Aca­

demic Press, New York, 1, 1971. 
19Eriksson, C., The Biochemistry and Physiology of Bone, Vol. 4, Bourne, G.H., Ed., Academic 

Press, New York, 329, 1976. 
20Brighton, C.T., Black, J., Friedenberg, Z.B., Esterhai, J.L., Day, L.J., Connolly, J.F., J. Bone 

Jt. Surg., 63-A,2. 1981. 



20 CHAPTER 1. TIME DEPENDENT TISSUE BEHAVIOR 

presses the material against a porous Ag/AgCl electrode, fluid is forced through the 
porous electrode. Fluid entrainment of mobile ions produces a slight excess of coun­
terions in the region of the porous electrode and a slight excess of unneutralized fixed 
charge groups at the other electrode. This charge separation produces the stream­
ing potential. The microcontinuum model of Figure 8.3.1b pictures the balance of 
viscous and electrical shear stresses in the electrical double layer at the surface of a 
negatively charged solid particle. Here, fluid convection of counterions along the sur­
face produces a streaming potential proportional to the double layer surface charge, 
or equivalently, the electrokinetic ζ-potential. 

EXAMPLE: Deformation, Fluid Flow, and Electrokinetic Response of soft 
Tissue in Uniaxial Confined Compression 

Deformation-induced potentials in soft tissues such as tendon, cartilage, and 
vessel walls have been measured. A macrocontinuum poroelastic theory for streaming 
potentials in soft tissues is summarized below. This model accounts for the depen­
dence of the potential on the nonuniform fluid velocity profile within the tissue caused 
by dynamic or transient mechanical deformation of the tissue. 

The theory incorporates the linear, nonequilibrium thermodynamic constitu­
tive laws, Eq. (2), which relate the average fluid velocity Uz (z) and current density 
Jz (z) to the local pressure and potential gradients within the tissue. Figure 8.3.1a 
shows the coordinate frame of reference. 

The current density J in Eq. (2b) is negligible when a high input impedance 
is used to measure the potential. Thus, ∂P/∂z can be written in terms of ∂V/∂z and 
Eq. (2a) becomes: 

� 
k22 

� 
∂v 

Uz = −k (3)
k21 ∂z 

To find the streaming potential measured between the positive electrode at 
z = 0 (articular surface) and the negative electrode at z = ω, Eq. (3) is intergrated 
from δ to 0, 

� 0 k21 ˆV̂ (ω) = − U(z, ω)dz (4) 
δ k k22 

where V̂ (ω) and Û(z, ω) are the complex amplitudes corresponding to the sinusoidal 
steady state. If the velocity profile Û(z, ω) can be measured or calculated, then the 
streaming potential V̂ (ω) can be computed and compared to experimental results. 
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To estimate the velocity profile, the fundamental equations of poroelasticity 
are combined as described in Section 8.2. As cartilage is deformed, the internal 
electrical potential and fluid velocity fields will vary with position inside the matrix 
in a manner that must be consistent with the internal deformation and stress fields. 
The velocity and deformation fields are related by continuity, Eq. (8.2.8) (assuming 
that the fluid and solid phases are each incompressible), 

U(z, ω) = −jωû(z, ω) (5) 

The displacement profile was solved for the case of sinusoidal steady state uni­
axial confined compression to predict the of Eq. (5) for bulk cartilage. In addition, a 
lumped parameter spring constant Ks was included to account for observed proper­
ties of the porous platen and the local three-dimensional interdigitation between the 
cartilage surface and the porous filter connected to the load cell: 

� 
(Ks/A) 

� 
sinh γ(δ − z)

û(z, ω) = uo (6)
(Ks/A) + Hγ coth γδ sinh γδ 

where A is the specimen cross-sectional area, H is the matrix equilibrium elastic 
modulus, γ is the complex wavenumber (1 + j)[ω/2Hk]δ is the specimen thickness, 
and uo is the imposed dynamic displacement. For f < 0.01 to 0.1 Hz, it was found 
that Ks/A � Hγδ coth γδ and the term in brackets in Eq. (6) becomes unity. The 
displacement field (6) corresponds to a diffusion wave characterized by the skin depth 
(2Hk/ω). The sinusoidal streaming potential amplitude and phase angle ψ corre­
sponding to the displacement field (6) was obtained by using Eqs. (5) and (6) in 
Eq. (4), 

k21 Ks/A cosh γδ − 1 
V̂ (ω) = 

−jωuo
(7)

γkk22 Ks/A + Hγ coth γδ sinh γδ 

ψ = γ � V̂ (ω) (8) 

The theoretical model for streaming potential, Eqs. (7) and (8) has been com­
pared to deformation induced potentials measured across plugs of bovine articular 
cartilage in uniaxial confined compression. Specimens from the femoropatellar groove 
were tested from 0.001 Hz to 20 Hz. The mechanical stiffness, mechanical phase angle 
between stress and displacement, and the electrical potential and its phase angle were 
compared to the corresponding mechanical theory. By curve fitting the mechanical 
theory to data, H, k and Ks were computed for each specimen (Figure 8.3.2a). This 
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is important since the electrical phase angle ψ (Eq. (8)) contains no other adjustable 
parameters. The reasonable fit between experimental and theoretical ψ over the en­
tire frequency range (Figure 8.3.2b) was interpreted as very strong evidence that the 
deformation-induced potentials were produced by a streaming (electrokinetic) mecha­
nism. Hence, use of the simultaneous measurement of streaming potential can provide 
important information on velocity and deformation fields within articular cartilage, 
subjected to various mechanical deformations. 

A powerful technique for isolating transduction mechanism is to characterize 
its kinetics. Here, the kinetics of the measured potentials are embodied in the electri­
cal phase angle ψ, which was compared to a macrocontinuum theoretical model based 
on the flow of fluid relative to a charged matrix. A significant piezoelectric response 
in cartilage would be highly unlikely due to macroscopic symmetry considerations, 
and due to the fast charge relaxation time constants (10−7 to 10−9 sec). 

It could be hypothesized that pulse-like mechanical deformations in wet bone 
and cartilage may produce an initial piezoelectric spike followed by a more slowly 
varying streaming potential response. However, successful detection of even nanosec­
ond potential spikes is not conclusive evidence of a piezoelectric mechanism because 
the frequency response of a streaming mechanism in a microporous medium may also 
be very high. An order of magnitude estimate of the latter can be computed from the 
viscous diffusion time constant τv.d. associated with the onset of full-developed creep­
ing flow in a capillary of radius R. Given fluid viscosity η and density ρ, dimensional 
analysis of the Navier-Stokes equation gives 

ρ2 

τv.d. (9)� 
η 

where τv.d. ∼ 10−6 − 10−10sec for R = 10−6 − 10−8m respectively. Since the streaming 
potential mechanism is usually based on the assumption of viscous dominated creeping 
flow, may be taken as a measure of the frequency response of this mechanism. 




