Table 2.7 Maxwell's equations for linear media.

Science, 2011. [Preview with Google Books]

What E field does a 7 µm diam cell "see" in a 1.5 m wavelength EM wave?

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/ help/faq-fair-use/.

PSet 4, P1 (Show that.....)

From EM Waves to Quasistatics

- Show that this quasistatic limit corresponds to the case where the wavelength λ of the EM wave >> characteristic length L of the system (e.g., "L" of a tissue, cell, etc.)....
 use scaling analysis with Maxwell's eqns.
- RESULT: (∇×E ≈ 0) can be replaced by (E = -∇Φ) and don't worry about EM Waves!

Charge Relaxation) V.J=-(22/24) $\nabla \cdot \epsilon E = 0$ $P_e = [p(r,t=0]e$ (NaCI) o,e Tch. rel. ~ (Er Re (t < 0) Se(1, +>0) p(r,tco) At t=0, turn off B" Charges p_e migrate to insulating interfaces

EQS subset of Maxwell's Eqns

P5.1: EKG: Centric Dipole Model of the Heart

Beating Heart is still a solution of Laplace: $\nabla^2 \Phi = 0$

Table 2.8 Quasistatic laws for linear media.

Electroquasistatic (EQS)

 $\nabla \cdot \epsilon \mathbf{E} = \rho_{\mathbf{e}}$

 $\nabla \times \boldsymbol{E} = 0$

© Garland Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]

Beating Heart is still a solution of Laplace: $\nabla^2 \Phi = 0$

Table 2.8 Quasistatic laws for linear media.

Electroquasistatic (EQS)

 $\nabla \cdot \epsilon \mathbf{E} = \rho_e = \mathbf{0}$ inside a uniform conductor carrying current $\nabla \times \mathbf{E} = 0$ "Steady" Conduction (sec 2.7.1) (since $\tau_{heart} >> \tau_{ch. rel.}$) $J = \sigma E$ ~10⁻⁹ sec in ~1 sec physiologic media

© Garland Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]

Electrosurgery: Cutting and Coagulation

Universal Hemicylindrical Patient

Prob. 2.7 in Text

Electrosurgery: Cutting and Coagulation

FFF: Complete Description of Coupled Transport and Biomolecular Interactions

Charge of Amino Acid Residues

20.430J / 2.795J / 6.561J / 10.539J Fields, Forces, and Flows in Biological Systems $\mathsf{Fall}\ 2015$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.