
20.430/6.561/10.539/2.795
Fields, Forces, and Flows in Biological Systems 

Fall 2015 
  
  
Problem Set # 1 (Chemical Sub-System)     Issued:  9/14/15 
Due: 5pm -- 9/25/15 
 

Problem Sets should be turned in to the 20.430 FFF drop-off boxes, located to 
the right of the elevators on the 2nd floor of Building 16. Please turn Problems 1 
& 2 into Box 1, and Problems 3 & 4 into Box 2. 

Please state any additional assumptions you feel are necessary to solve 
the problems. 

Reading Assignment: Chapter 1, Pages 1-10 from FFF by AJ Grodzinsky 

Problem 1: Bacterial chemotaxis 

Bacteria such as E. coli swim and tumble stochastically in order to increase their search 
radius for nutrients in their environment. In order to chemotax toward a food source, E. 
coli are able to modulate their frequency of tumbling as well as the distance they can 
move in a single burst. Suppose that you have grown a population of E. coli at the 
center of a petri dish and then placed a ring of nutrients (at t = 0) around the colony 
100 body lengths away. The nutrients degrade over time with a half-life of one minute.  

On average, what is the time interval (τ) and swimming distance (δ) required for the 
population of E. coli to reach the food before 95% of it has degraded, and each E. coli 
can travel 10 body lengths per second?  

With these values, what is the effective diffusion coefficient (Deff) of E. coli?  

How do these values change if the nutrients are 1,000 body lengths away? 
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Problem 2: Statistical mechanics of a molecular trap 

In lecture we analyzed free diffusion of a molecule undergoing Brownian motion. In 
single-molecule spectroscopy, a laser is used to apply a restoring force on a polystyrene 
bead that is used to “trap” single molecules such as molecular motors, proteins, and 
RNAs to understand their conformational and binding dynamics, where the 1D potential 
energy of the trapped particle is, U(x) = 1/2 kx2, when located at any position x. 

a. Assuming that this system is in thermal equilibrium on long time-scales of 
observation, compute the mean-squared displacement 2x< >  of the particle using 
the Boltzmann distribution in 1D continuous space.  

Hints: 

• The trapped particle’s position x represents a microstate that takes on 
continuous values. Therefore, the partition function takes the form of an 

integral, exp( )BU xZ / k T d−= ∫  over all states (here, x−∞ < < ∞ ). 
• Recall from elementary probability theory that the mean of any random 

variable α  is simply ( )P dxα α α< >= ∫ , where the integral is over all values 
of α , and the probability distribution must be normalized. 

• The integrals in the following link may be useful: 
https://en.wikipedia.org/wiki/Gaussian_integral 

 

b. Explain how this mean-squared displacement expression differs from that of a 
free particle, and how the observation time-window over which the mean-squared 
displacement is measured experimentally impacts your interpretation of the 
particle’s free versus trapped motion. Does your mean-squared displacement 
expression depend on lag-time? Why or why not? 

Hints:  

• Sketch the mean-squared displacement of the particle over time including 
times that are much smaller than the diffusional time corresponding to 

2x< >  and also for times much larger than this time-scale.  
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Problem 3: Diffusion of drug from a cylindrical disk 

 
Drug-eluting materials are often used for controlled release of drugs over 
extended time periods. The implant is often in the form of a disk-shaped polymer 
implant that can be easily inserted subcutaneously. For a thin disk (thickness, 2H 
<< radius, a), diffusion from the disk into the surrounding tissues can be treated 
as a one-dimensional problem in the direction perpendicular to the surface of the 
disk, except near the edges. Remember to state any assumptions in your analysis. 
 
(a) A drug is being released uniformly from the material contained in the disk at a 
fixed rate R. Find an expression for the pseudo-steady-state concentration profile 
of drug inside the disk. You may assume that drug diffuses so freely in the 
surrounding tissue relative to within the disk, that the surface concentrations, 
c(x=-H) and c(x=H) can both be assumed to be zero. The diffusion coefficient 
inside the disk is D. 
 
(b) Plot the concentration profile c(x) obtained in (a).  
 
(c) Compute the steady flux of drug out of the disk at x = -H and x = +H, as well 
as the total rate of drug release from the disk. (Hint: typical units for rate of drug 
release would be mol/s). 
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Problem 4: Kinetics of nuclear-cytoplasmic molecular diffusion across 
nuclear pores 

 

The ~50 nm thick nuclear membrane in eukaryotic cells consists of two lipid bilayers in 
which there reside as many as ~2,000 nuclear pores (each ~10 nm diameter) that control 
the passage of small and large molecules between the nucleus and cytoplasm. Small 
molecules and proteins with a M.W. < 40 kDa can rapidly transport across nuclear pores 
and equilibrate between nucleus and cytoplasm. (Other molecules (e.g., mRNA and 
tRNA) require facilitated transport to pass through the nuclear pore to the cytoplasm 
where they participate in protein synthesis.)  
 
In an early paper (BioTechniques, 1998), Chatterjee and Stochaj devised a method to 
transfect HeLa cells (the famous immortalized cell line named after Henrietta Lacks) with 
a 29 kDa green fluorescent protein (the chimeric or fusion protein was called “NP-GFP”). 
This protein preferentially accumulated within the nucleus of the cells by means of 
facilitated transport. However, lowering the temperature eliminated such facilitated 
transport, and the protein was then able to freely diffuse from the nucleus outward into 
the cytoplasm (which was characterized by fluorescence microscopy). 
 
The objective of this problem is to develop a simple 1-D continuum model of the initial 
kinetics of the spatial-temporal evolution of NP-GFP transport into the interior of the gel-
like matrix within the nuclear pore complex, as the NP-GFP begins to diffuse from the 
nucleus into the pore and ultimately across to the cytoplasm.  In the figure below, c1 = 
NP-GFP concentration in the nucleus and c2 = NP-GFP concentration in the cytoplasm, 

nucleus cytoplasm

Nuclear Pore 
Complex

~50 nm

~10 nm

gel-like 
network
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and all the nuclear pores are lumped together and represented as the 1-D shaded region 
from x = 0 to x = L:   

 

Accumulation of NP-GFP in the nucleus results in the initial nucleus concentration c1 at t 
= 0+ shown in the middle figure. (This is the initial condition for the solution of your 
diffusion equation.) As diffusion across the pore occurs, you can assume that the volume 
of the cytoplasm is so large (relative to the nucleus) that the concentration of NP-GFP in 
the cytoplasm is “diluted” to c2 ~ 0 throughout the diffusion times of interest here. Thus, 
for experimental times of interest, you can assume that the boundary conditions on NP-
GFP at the inner and outer edges of the nuclear pores are: c = c1 at x = 0 and c = c2 = 0 at 
x = L. (We know that for much longer times, the concentration of NP-GFP in the 
cytoplasm will eventually equal that in the nucleus, as true equilibrium is reached. But we 
are focusing here on the initial diffusion kinetics within the nuclear pore gel-matrix.   

(a) Combine Fick’s laws (flux and continuity) to form the overall diffusion 
equation of interest, with D = diffusivity of NP-GFP. 

(b) Solve the diffusion equation to find c(x,t) inside the nuclear pore (0 < x < L) 
valid from      t = 0+ to times long enough that the concentration profile reaches 
the linear profile within the pore matrix labeled as “t = ∞”. 

(c) What is the characteristic diffusion time for transport of NP-GFP across the 
nuclear pore of thickness L? (Note that we are assuming that this time constant 
is much shorter than the time needed for NP-GFP to eventually equilibrate 
between the cytoplasm and nucleus. We will calculate that (longer) time 
constant in a future problem.) 

Hints:  

i The space-time evolution of c(x,t) for this problem is similar to that for IGF-1 in 
Fig 1.18 on page 26 of the text, except in this homework problem, there is no 
binding of NP-GFP to anything (by assumption). 

ii Show that your answer is the same as Eqn. 1.72 on page 28 of the text, except that 
Deff in (1.73) and 1.74) = D (no binding here). Note that any numerical constants 
that appear in the characteristic time constant (e.g., Eq. 1.74) are associated with 
the particular boundary conditions that are specified in the problem. 
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But: please note that there is a typo in Eq. (1.72): In the right most term, the factor (1/n) 
shown as outside the summation sign should be inside the summation, directly 
multiplying sin(nπx/L). 
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