## ELECTRICAL SUBSYSTEM

| Lect |  | Date |
| :--- | :--- | :--- |
| 8 | Oct 7 | A. ELECTRICAL SUBSYSTEM: Fundamentals \& Applications |
| 9 | Ect 13 | Defields and transport; Maxwell's equations for electric \& magnetic fields <br> Defrical potential; conservation of charge; Electro-quasistatics <br> 10 |
| Oct 14 | Laplacian solutions; examples with electrodes; Electric field boundary <br> conditions; Ohmic transport; Charge Relaxation; Electrical migration vs. chemical <br> diffusive fluxes |  |
|  | Oct 19 | Fundamentals and applications of EQS: MEMs; cell electroporation; EKG |
| B. |  | ELECTRICAL SUBSYSTEM: Transport, binding, molecular interactions |

FFF: Complete Description of Coupled Transport and Biomolecular Interactions
Diffusion-

$$
\underline{J}=\sum_{i} z_{i} F N_{i}
$$ Reaction

$$
\begin{aligned}
& (\underline{E}=-\nabla \bar{\Phi}) \\
& \nabla \cdot \underline{J}=-\frac{\partial \rho_{e}}{\partial t}
\end{aligned}
$$

"E.Q.S."


Start with Maxwell's Equations

FFF: Complete Description of Coupled Transport and Biomolecular Interactions

$$
\begin{aligned}
& \frac{\partial c_{i}}{\partial t}=-\nabla \cdot N_{i}+R_{\nu i} \\
& \nabla \cdot \underline{J}=-\frac{\partial \rho_{e}}{\partial t} \\
& \text { Diffusion- } \\
& \text { Reaction } \\
& (\underline{E}=-\nabla \Phi)
\end{aligned}
$$

Current density $\underbrace{F\left(\frac{\left(10^{5}\right)}{\mathrm{coul}}\right)}_{\text {Faradays }} N_{i}\left(\frac{\mathrm{~mol}}{\left.\mathrm{~m}^{2} \cdot \mathrm{~s}\right)}\right)=\mathrm{J}\left(\frac{\mathrm{A}}{\mathrm{m}^{2}}\right]$ constant
(Last Time):
(Table 2.7, p. 63)

## Name

## Integral form

(1) Gauss' law

$$
\oint_{S} \epsilon \boldsymbol{E} \cdot d \boldsymbol{a}=\int_{V} \Theta \text { charges }
$$

(3) Ampère's law

$$
\oint_{C} \boldsymbol{H} \cdot d \boldsymbol{s}=\int_{S}(\boldsymbol{J} \cdot d \boldsymbol{a} \text { currents }
$$

(2) Faraday's law
(4) Magnetic flux

$$
\oint_{C} \boldsymbol{E} \cdot d \boldsymbol{s}=-\frac{d}{d t} \int_{S} \mu \boldsymbol{H} \cdot d \boldsymbol{a}
$$

Magnetic
$\left.\oint_{S}^{\mu \boldsymbol{H} \cdot d \boldsymbol{a}=0} \begin{array}{c}\text { No magnetic } \\ \text { "monopoles" } \\ \text {..only dipoles }\end{array}\right)$
(Last Time):
(Table 2.7, p. 63)

## Name

## Integral form

(1) Gauss' law

$$
\begin{gathered}
\oint_{S} \epsilon \boldsymbol{E} \cdot d \boldsymbol{a}=\int_{V} \rho_{e} \\
\oint_{C} \boldsymbol{H} \cdot d \boldsymbol{s}=\int_{S} \boldsymbol{J} \cdot d \boldsymbol{a}+\frac{d}{d t} \int_{S} \epsilon \boldsymbol{E} \cdot d \boldsymbol{a} \\
\oint_{C} \boldsymbol{E} \cdot d \boldsymbol{s}=\frac{d}{d t} \int_{S} \mu \boldsymbol{H} \cdot d \boldsymbol{a}
\end{gathered}
$$

(4) Magnetic flux

$$
\oint_{S} \mu \boldsymbol{H} \cdot d \boldsymbol{a}=0
$$

## Table 2.7 Maxwell's equations for linear media.

Name

## Differential form



## Table 2.7 Maxwell's equations for linear media.

## Page 44, 46

## EM Waves

Ampère's law

Faraday's law

$$
\nabla \times \boldsymbol{H}=\mathbf{X}+\frac{\partial \epsilon \boldsymbol{E}}{\partial t}
$$

$$
\nabla \times(\nabla \times \boldsymbol{E})=-\mu \epsilon \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}
$$

Speed of light

$$
c=1 / \sqrt{\mu \epsilon}=f \lambda
$$

$$
\nabla^{2} \boldsymbol{E}=\mu \epsilon \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}
$$

© Garland Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]

## Demo from Last Lecture: Electromagnetic "Standing Wave"



## Electromagnetic Spectrum <br> Text Table 2.6

Region of electromagnetic spectrum from infralow to superhigh frequencies in which $h \nu<k T$
$60 \mathrm{~Hz} \leftrightarrow 3,100$ mile wavelength


## Chemical Subsystem: Conservation of Mass



## "Polarization"

No E-field


## Applied E



Courtesy of flikr


## Induced polarization

(atomic/molecular)

## Orientation polarization

 (orientation of $\mathrm{H}_{2} \mathrm{O}$ dipoles)Net Negative Charge



## Homogeneous, isotropic, nonlinear Polarization:

 (Example: E-induced orientation of water dipoles)

## Homogeneous, isotropic, nonlinear Polarization:

 (Example: E-induced orientation of water dipoles)$\boldsymbol{P}=$ dipole moment density
In general, $P$ can be:

- Non-linear
- Anisotropic (e.g., a tensor in a crystal)
- A function of frequency
(dipoles acting like harmonic oscillators in a sinusoidal E field)


From a painting at the Deutsches Museum, Munich.
GEORG SIMON OHM

## 1789-1854

## Mathematician and experimentalist

## Current Flow in

 conductorsOhm's Law:
(empirical)
$\boldsymbol{J}=\sigma \boldsymbol{E}$ Always?
$(\mathrm{iR}=\mathrm{V})$
(circuits)

## Electro-Statics:

$$
\nabla^{2} \Phi \Rightarrow\left(\partial^{2} \phi / \partial x^{2}=0\right) \text { "Laplace's Eqn" }
$$



PSet 4, P3: "Gradient" Gel Electrophoresis

FFF: Complete Description of Coupled Transport and Biomolecular Interactions

$$
\begin{aligned}
& \frac{\partial c_{i}}{\partial t}=-\nabla \cdot N_{i}+R_{\nu i} \\
& \nabla \cdot \underline{\mathcal{J}}=-\frac{\partial \rho_{e}}{\partial t} \\
& \text { Diffusion- } \\
& \text { Reaction } \\
& (\underline{E}=-\nabla \Phi) \\
& / \frac{\underline{N}=\xi_{i} z_{i} F N_{i}}{\text { "E.Q.S." }}
\end{aligned}
$$

Current density $\underbrace{F\left(\frac{\left(10^{5}\right)}{\mathrm{coul}}\right)}_{\text {Faraday's }} N_{i}\left(\frac{\mathrm{~mol}}{\left.\mathrm{~m}^{2} \cdot \mathrm{~s}\right)}\right)=\mathrm{J}\left(\frac{\mathrm{A}}{\mathrm{m}^{2}}\right]$ constant

Quasistatic Approximation:
$\oint_{C} \boldsymbol{E} \cdot d \boldsymbol{s}=-\frac{d}{d t} \int_{S} \boldsymbol{\mu}_{\boldsymbol{\sigma}} \boldsymbol{H} \cdot d \boldsymbol{a} \approx 0$


- $E$ is a "Conservative Field"
- Can define an "electrical potential" $\phi$
- $\underline{E}=-\nabla \phi$


## PSet 4, Prob 1

(1) From EM Waves to Quasistatics (a 3-line derivation...)

For slow enough time rates of change ( $\partial / \partial \mathrm{t} \rightarrow 0$ ), we can neglect the $(\partial \mu \mathrm{H} / \partial \mathrm{t})$ term in Faraday's law and arrive at the quasistatic form, $\nabla \times E \approx 0$.......Show that this quasistatic limit corresponds to the case where the wavelength $\lambda$ of the EM wave is >> characteristic length $L$ of the system (e.g., a tissue, cell, etc.)....use scaling analysis with Maxwell's eqns.....

## ElectroStatics: $\nabla \cdot \underline{J}=-\left(\partial \rho_{\mathrm{e}} / \partial \mathrm{t}\right) \equiv 0$

$$
\begin{aligned}
& \nabla \cdot J=0=\nabla \cdot \sigma E=\sigma[\nabla \cdot(-\nabla \Phi)]=0 \rightarrow \nabla^{2} \Phi=0 \text { Laplace }
\end{aligned}
$$

## But: Electrolysis Reactions at Electrodes



$\Longleftarrow$ Metal Electrodes
 $\xrightarrow[\underline{E}]{\text { DEMO }}$

Really: $J=\sigma E+$ diffusion + convection

MIT OpenCourseWare
|http://ocw.mit.edu
20.430J / 2.795J / 6.561J / 10.539J Fields, Forces, and Flows in Biological Systems

Fall 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

