ELECTRICAL SUBSYSTEM

Lect	Date	A. ELECTRICAL SUBSYSTEM: Fundamentals & Applications
8	Oct 7	E-fields and transport; Maxwell's equations for electric & magnetic fields
9	Oct 13	Define electrical potential; conservation of charge; Electro-quasistatics
10	Oct 14	Laplacian solutions; examples with electrodes; Electric field boundary conditions; Ohmic transport; Charge Relaxation; Electrical migration vs. chemical diffusive fluxes
	Oct 19	Fundamentals and applications of EQS: MEMs; cell electroporation; EKG
В.	ELECT	RICAL SUBSYSTEM: Transport, binding, molecular interactions
11	Oct 21	Electrochemical coupling; Electrical double layers; Poisson–Boltzmann Equation
12	Oct 26	Donnan equilibrium in tissues, gels, polyelectrolyte networks
13	Oct 28	Charge group ionization & electro-diffusion-reaction in molecular networks
14	Nov 2	Transport of charged proteins into charged tissues with Donnan BCs

(Last Time):

NameIntegral form(1) Gauss' law
$$\oint_{S} \epsilon \mathbf{E} \cdot d\mathbf{a} = \int_{V} \rho e$$
 charges(3) Ampère's law $\oint_{C} \mathbf{H} \cdot d\mathbf{s} = \int_{S} \mathbf{D} \cdot d\mathbf{a}$ (2) Faraday's law $\oint_{C} \mathbf{E} \cdot d\mathbf{s} = -\frac{d}{dt} \int_{S} \mu \mathbf{H} \cdot d\mathbf{a}$ (4) Magnetic flux $\oint_{S} \mu \mathbf{H} \cdot d\mathbf{a} = 0$ (4) Magnetic flux $\oint_{S} \mu \mathbf{H} \cdot d\mathbf{a} = 0$ (1) Gauss' law $\oint_{S} \mu \mathbf{H} \cdot d\mathbf{a} = 0$ (2) Faraday's law $\oint_{C} \mathbf{E} \cdot d\mathbf{s} = -\frac{d}{dt} \int_{S} \mu \mathbf{H} \cdot d\mathbf{a}$ (2) Faraday's law $\oint_{C} \mathbf{E} \cdot d\mathbf{s} = -\frac{d}{dt} \int_{S} \mu \mathbf{H} \cdot d\mathbf{a}$ (4) Magnetic flux $\oint_{S} \mu \mathbf{H} \cdot d\mathbf{a} = 0$ (4) Magnetic flux $\int_{S} \mu \mathbf{H} \cdot d\mathbf{a} = 0$ (4) Magnetic flux $\int_{S} \mu \mathbf{H} \cdot d\mathbf{a} = 0$

(Last Time):

Table 2.7 Maxwell's equations for linear media.

Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]

Table 2.7 Maxwell's equations for linear media. Page 44, 46 **EM Waves** $\nabla \times \boldsymbol{H} = \boldsymbol{X} + \frac{\partial \epsilon \boldsymbol{E}}{\partial t}$ Ampère's law $\nabla \left[\nabla \times \boldsymbol{E} = -\frac{\partial \mu \boldsymbol{H}}{\partial \boldsymbol{H}} \right]$ Faraday's law $\nabla\times(\nabla\times\boldsymbol{E}) = -\mu\epsilon\frac{\partial^{2}\boldsymbol{E}}{\partial t^{2}}$ $\nabla^2 \boldsymbol{E} = \mu \epsilon \frac{\partial^2 \boldsymbol{E}}{\partial t^2}$ Speed $c = 1/\sqrt{\mu\epsilon} = f\lambda$ of light

© Garland Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]

Demo from Last Lecture: Electromagnetic "Standing Wave" $(\lambda/2) = 75 \text{ cm}$ Power Supply: f = 200 MHz Ε Н Ε Н \odot മ лđ ø $oldsymbol{\Theta}$ λ/2 $f = 200 \text{ MHz}; \lambda = [c/f] =$ $\lambda = 1.5 \text{ m}$

Electromagnetic Spectrum

Text Table 2.6

Region of electromagnetic spectrum from infralow to superhigh frequencies in which $h\nu < kT$

Chemical Subsystem: Conservation of Mass

$$\frac{d}{dt} \int_{V} c_{i} dV = -\oint_{S} \mathbf{N}_{i} \cdot \mathbf{n} da + \int_{V} R_{i} dV$$

rate of outward reaction:
increase of Flux of generation
 c_{i} inside solute of species
volume

Figure 1.1 removed due to copyright restrictions. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]

Homogeneous, isotropic, nonlinear Polarization: (Example: E-induced orientation of water dipoles)

Homogeneous, isotropic, nonlinear Polarization: (Example: E-induced orientation of water dipoles)

P = dipole moment density

In general, *P* can be:

- Non-linear
- Anisotropic (e.g., a tensor in a crystal)
- A function of frequency (dipoles acting like harmonic oscillators in a sinusoidal E field)

From a painting at the Deutsches Museum, Munich.

GEORG SIMON OHM

1789-1854

Mathematician and experimentalist

Current Flow in conductors

Ohm's Law: (empirical)

Electro-Statics:

 $\nabla^2 \Phi \Rightarrow \left(\partial^2 \phi / \partial x^2 = 0 \right)$ "Laplace's Eqn"

PSet 4, P3: "Gradient" Gel Electrophoresis

- **E** is a "Conservative Field"
- Can define an "electrical potential" ϕ
- $\underline{\boldsymbol{E}} = -\nabla\phi$

PSet 4, Prob 1

(1) From EM Waves to Quasistatics (a 3-line derivation...)

For slow enough time rates of change $(\partial/\partial t \rightarrow 0)$, we can neglect the $(\partial \mu H/\partial t)$ term in Faraday's law and arrive at the **quasistatic form**, $\nabla \times E \approx 0$Show that this quasistatic limit corresponds to the case where the wavelength λ of the EM wave is >> characteristic length L of the system (e.g., a tissue, cell, etc.)...use scaling analysis with Maxwell's eqns.... **ElectroStatics:** $\nabla \cdot \underline{J} = -(\partial \rho_e / \partial t) \equiv 0$

 $\nabla \bullet J = 0 = \nabla \bullet \sigma E = \sigma [\nabla \bullet (-\nabla \Phi)] = 0 \rightarrow \nabla^2 \Phi = 0$ Laplace

But: Electrolysis Reactions at Electrodes

Really: **J** = σE + diffusion + convection

20.430J / 2.795J / 6.561J / 10.539J Fields, Forces, and Flows in Biological Systems $\mathsf{Fall}\ 2015$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.