Table 2.7 Complete Description of Electrodynamics

Name
(1) Gauss' law
(2) Faraday's law
(3) Ampère's law
(4) Magnetic flux
(5) Charge conservation

$$
\nabla \cdot \boldsymbol{J}=-\frac{\partial \rho_{e}}{\partial t}
$$

(6) Lorentz force law

$$
\boldsymbol{F}=\rho_{e}[\boldsymbol{E}+\boldsymbol{v} \times \mu \boldsymbol{H}]
$$

(7) Newton's law (single charged particle)

$$
\nabla \cdot \epsilon \boldsymbol{E}=\rho_{e}
$$

$$
\nabla \times \boldsymbol{E}=-\frac{\partial \mu \boldsymbol{H}}{\partial t}
$$

Differential form

$$
\nabla \times \boldsymbol{H}=\boldsymbol{J}+\frac{\partial \epsilon \boldsymbol{E}}{\partial t}
$$

$$
\nabla \cdot \mu \boldsymbol{H}=0
$$

Constitutive

 Laws for Linear, Isotropic Media$\boldsymbol{D}=\varepsilon \boldsymbol{E}=\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}$

$$
B=\mu H
$$

$$
J=\sigma E
$$

$J=\sigma E$

$$
\mathrm{m}(\partial \boldsymbol{v} / \partial \mathrm{t})=\underbrace{\mathrm{q}(\boldsymbol{E}+\boldsymbol{v} \times \mu \boldsymbol{H})}_{\boldsymbol{f} \text { elec }}+\boldsymbol{f} \text { other }
$$

Table 2.7 Complete Description of Electrodynamics

Name
(1) Gauss' law
(2) Faraday's law Differential form

$$
\nabla \cdot \epsilon \boldsymbol{E}=\rho_{e}
$$

$$
\nabla \times E=-\frac{\partial \mu / \boldsymbol{A}}{\partial t} \approx 0 \text { either } \mathrm{H}=0, \text { or }
$$

- $\partial / \partial t \approx$ small
- low enough freq
- $\lambda \gg$ Lchar
(5) Charge conservation $\quad \nabla \cdot \boldsymbol{J}=-\frac{\partial \rho_{e}}{\partial t}$

Constitutive Law
(6) Lorentz force law
$\boldsymbol{F}=\rho_{e}[\boldsymbol{E}+\boldsymbol{v} \times \mu \boldsymbol{H}]$
(7) Newton's law: $\mathrm{m}(\partial \boldsymbol{v} / \partial \mathrm{t})=\mathrm{q}(\boldsymbol{E}+\boldsymbol{v} \times \mu \boldsymbol{H})+\boldsymbol{f}_{\text {other }}-\boldsymbol{J}=\sigma \boldsymbol{E}+\ldots$. (single charged particle)

From a painting at the Deutsches Museum, Munich

1789-1854

Mathematician and experimentalist

Current Flow in conductors

Ohm's Law:

$J=\sigma E$

\Uparrow
(empirical)

Electro-Statics:

But: Electrolysis Reactions at Electrodes

\rightleftharpoons Metal Electrodes

Really: $J=\sigma E+$ diffusion + convection

ElectroStatics: $\nabla \cdot \underline{J}=-\left(\partial \rho_{\mathrm{e}} / \partial \mathrm{t}\right) \equiv 0$

$$
\nabla \cdot J=0=\nabla \cdot \sigma E=\sigma[\nabla \cdot(-\nabla \Phi)]=0 \rightarrow \nabla^{2} \Phi=0 \quad \text { Laplace }
$$

Table B. 7 page 297

Solutions of Laplace's Eq.
$\nabla^{2} \Phi=0$
in 2 -dimen's

Rectangular Coordinates

(independent of z)
$e^{k x}$ and $e^{-k x}$ may be replaced by sinh $k x$ and $\cosh k x$.
$\Phi=e^{k x}\left(A_{1} \sin k y+A_{2} \cos k y\right)+e^{-k x}\left(B_{1} \sin k y+B_{2} \cos k y\right)$

$$
\Phi=A x y+B x+C y+D ; \quad(k=0)
$$

Cylindrical Coordinates

(independent of z)

$$
\Phi=r^{n}\left(A_{1} \sin n \phi+A_{2} \cos n \phi\right)+r^{-n}\left(B_{1} \sin n \phi+B_{2} \cos n \phi\right)
$$

$$
\Phi=\left(A_{1} \phi+A_{2}\right) \ln \frac{R}{r}+B_{1} \phi+B_{2} ; \quad(n=0)
$$

Spherical Coordinates

 (independent of ϕ):$$
\Phi=A r \cos \theta+\frac{B}{r^{2}} \cos \theta+\frac{C}{r}+D
$$

PSet 4, P3: Gradient Gel Electrophoresis

Plastic; conductivity $\sigma=0$

EQS subset of Maxwell's Eqns

Electro-Statics:

But is ρ_{e} zero everywhere?

$$
\nabla \cdot \varepsilon \underline{E}=\rho_{\mathrm{e}}=0 \rightarrow \nabla^{2} \Phi=0 \quad \text { Laplace }
$$

$$
x=0 \quad x=L
$$

Poisson-Boltzmann: Molecular Electrostatic Interactions

PSet 4, P2
0.1 M NaCl

$8 C$

 at $x=0$
where $c_{i 0}$ is the bulk concentration of the i th species. Show that your answer to part (a) reduces to the limiting form

$$
\begin{equation*}
\frac{d^{2} \Phi(x)}{d x^{2}}=\kappa^{2} \Phi(x) \tag{2.128}
\end{equation*}
$$

"Poisson-Boltzmann Eqn"
(linearized)
....Find $\Phi(\mathrm{x})$

Table 2.7 Complete Description of Electrodynamics

Name

(1) Gauss' law
(2) Faraday's law

Differential form

$$
\nabla \cdot \epsilon \boldsymbol{E}=\rho_{e}
$$

$$
\nabla \times E=-\frac{\partial \mu \nmid}{\partial t} \approx 0 \begin{aligned}
& \text { either } \mathrm{H}=0, \text { or } \\
& \cdot \partial / \partial t \approx \text { small }
\end{aligned}
$$

- low enough freq
- $\lambda \gg$ Lchar
(5) Charge conservation
$\nabla \cdot \boldsymbol{J}=-\frac{\partial \rho_{e}}{\partial t}$
Constitutive Law
(6) Lorentz force law
$\boldsymbol{F}=\rho_{e}[\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{\mu} \boldsymbol{H}]$
(7) Newton's law: $m(\partial \boldsymbol{v} / \partial \mathrm{t})=\mathrm{q}(\boldsymbol{E}+\boldsymbol{v} \times \mu \boldsymbol{H})+\boldsymbol{f}$ other $] \boldsymbol{J}=\sigma \boldsymbol{E}+\ldots$ (single charged particle)

FFF: Complete Description of Coupled Transport and Biomolecular Interactions

$\frac{\partial c_{i}}{\partial t}=-\nabla \cdot N_{i}+R_{\nu_{i}}$
Diffusion-
Reaction

MIT OpenCourseWare
|http://ocw.mit.edu
20.430J / 2.795J / 6.561J / 10.539J Fields, Forces, and Flows in Biological Systems

Fall 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

