Table 2.7 Complete Description of Electrodynamics

1

	Name	Differential form	
(1)	Gauss' law	$\nabla \cdot \epsilon \mathbf{E} = \rho_{\mathbf{e}}$	Constitutive
(2)	Faraday's law	$ abla imes \mathbf{E} = -rac{\partial \mu \mathbf{H}}{\partial t}$	Laws for Linear, Isotropic Media
(3)	Ampère's law	$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \epsilon \boldsymbol{E}}{\partial t}$	$\boldsymbol{D} = \varepsilon \boldsymbol{E} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P}$
(4)	Magnetic flux	$ abla \cdot \mu \boldsymbol{H} = 0$	Β = μ Η
(5)	Charge conservation	$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho_{\boldsymbol{e}}}{\partial t}$	J = σ E
(6)	Lorentz force law	$\boldsymbol{F} = \rho_{\boldsymbol{e}} \left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{\mu} \boldsymbol{H} \right)$	
(7)	Newton's law (single charged particle)	$m (\partial \mathbf{v} / \partial t) = q(\mathbf{E} + \mathbf{v} \times \mu \mathbf{H}) + \mathbf{f}^{\text{other}}$	

© Garland Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]

Table 2.7 Complete Description of Electrodynamics

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]

From a painting at the Deutsches Museum, Munich.

GEORG SIMON OHM

1789-1854

Mathematician and experimentalist

Current Flow in conductors

Ohm's Law:

But: Electrolysis Reactions at Electrodes

Really: **J** = σE + diffusion + convection

ElectroStatics: $\nabla \cdot \underline{J} = -(\partial \rho_e / \partial t) \equiv 0$

 $\nabla \bullet J = 0 = \nabla \bullet \sigma E = \sigma [\nabla \bullet (-\nabla \Phi)] = 0 \rightarrow \nabla^2 \Phi = 0$ Laplace

7

Solutions of Laplace's Eq.

 $\nabla^2 \Phi = 0$

in 2 - dimen's

Rectangular Coordinates (independent of *z*)

 e^{kx} and e^{-kx} may be replaced by sinh kx and cosh kx.

 $\Phi=e^{kx}(A_1\sin ky+A_2\cos ky)+e^{-kx}(B_1\sin ky+B_2\cos ky)$

$$\Phi = Axy + Bx + Cy + D; \qquad (k = 0)$$

Cylindrical Coordinates (independent of *z*)

 $\Phi = r^n (A_1 \sin n\phi + A_2 \cos n\phi) + r^{-n} (B_1 \sin n\phi + B_2 \cos n\phi)$

$$\Phi = (A_1\phi + A_2)\ln\frac{R}{r} + B_1\phi + B_2; \qquad (n = 0)$$

Spherical Coordinates (independent of ϕ):

$$\Phi = Ar\cos\theta + \frac{B}{r^2}\cos\theta + \frac{C}{r} + D$$

PSet 4, P3: Gradient Gel Electrophoresis

EQS subset of Maxwell's Eqns

But is ρ_e zero everywhere? $\nabla \cdot \epsilon \underline{E} = \rho_e = 0 \rightarrow \nabla^2 \Phi = 0$ Laplace = 0 in "bulk" ρ_e 0.1 M NaCl (ρ_e ≠ platinum pH 7 (initially) electrodes $J = \sigma E$ (in bulk) x = ()X

Intra-molecular Electrostatic Interactions Inter-molecular Electrostatic Interactions

Table 2.7 Complete Description of Electrodynamics

© Garland Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]

Current Density **J**

20.430J / 2.795J / 6.561J / 10.539J Fields, Forces, and Flows in Biological Systems $\mathsf{Fall}\ 2015$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.