Noncooperative cell behavior

Under certain conditions cells interact
with the biomaterial surface each
individually



A brief review or relevant structures:
cell membrane, transmembrane
proteins, cell receptors (integrins),
cytoplasm, matrix
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Unit cell process confined conceptually in a control volume dV
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Another
model

of a
specific
cell-matrix
Interaction

Diagram of fibronectin attaching cell to surface of collagen fiber
removed due to copyright restrictions.



View of cytoplasm
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Modified cell force monitor used to study
cell-matrix interactions quantitatively
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Use to study unit cell processes quantitatively

Freyman et al., 2001



15 S
11 Million Attached
Fibroblasts at 22h

10 »
6.0
72
E 44
-
r.:..; _ 2.3
e
1] ' T T T 1
I 6 12 | §: 24
5

Time |Hours|
Source: Freyman, T. M., I. V. Yannas, R. Yokoo, and L. J. Gibson. "Fibroblast contraction of a collagen-GAG matrix."
Biomaterials 22 (2001): 2883-2891. Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Fig. 2. Contractile force plotted against time, lor several densitics of
attached fibroblasts at 22h (cell number in millions). Raw data 1s
plotted for 2.3 and 4.4 million attached cells to show data scatter.
Higher densitics are shown by trend lines for clarity.
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Fig. 4. Force plotted against attached cell number per sample at 22 h,
showing a linear relationship at 2 h (solid line) and 10 hours (dashed line)

2 " Source; Freyman, T. M., . V. Yannas, R. Yokoo, and L. J. Gibson.
P 0 St Seedlng' "Fibroblast contraction of a collagen-GAG matrix." Biomaterials 22 (2001): 2883-2891.
Courtesy Elsevier, Inc., |ttp://www.sciencedirect.com. Used with permission.
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Table 1
Exponential curve fit parameters (1, F,)

Total no. of attached cells  Time constant,  Asymptotic value,

in matrix ( x 10%) T (h) F, imN)
2.3 + 031 5413 17406
44+ 021 4405 54+14
60 +0.13 5404 8.1 405
7.2 + 0.08 T+ L5 10+19

10 +£023 4405 121307




Light micrograph of hydrated matrix (scale bar = 100 pm).

Source: Freyman, T. M., I. V. Yannas, R. Yokoo, and L. J. Gibson. "Fibroblast contraction of a collagen-GAG matrix."
Biomaterials 22 (2001): 2883-2891. Courtesy Elsevier, Inc.,Ihttp://www.sciencedirect.com. Used with permission.
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Conclusions on Linearity vs.
Cooperativity of Fibroblast

Contraction of Matrix

The contractile force increases linearly
with cell density.

The average contractile force is calculated
at 1 nN per cell.

The time constant for development of
force Is also independent of cell density.

In this model cells must develop
contractile forces individually, not
cooperatively.
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Micromechanics of Fibroblast Contraction of a Collagen-GAG Matrix
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Slides with images removed due to copyright restrictions.

See Fig 2 (schematic of imaging setup), Fig. 4 and Fig. 5 (graphs of results).
In Freyman et al. “Micromechanics of Fibroblast Contraction of a Collagen—
GAG Matrix.” Exp Cell Res 269, no. 1 (2001): 140-153.
http://dx.doi.org/10.1006/excr.2001.5302
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Sequence
showing a cell
(arrow A)
simultaneously
elongating and
deforming a
matrix strut
(arrow B)

FIG. 6. Sequence of images depicting a cell (arrow A) simultaneously elongating and deforming a matrix strut (arrow B). As the ends of the strut
were drawn closer (2-28 min), the cell extended toward the ends of the strut (arrows C; it did not contract along with the strut. The buckling of the strut
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Courtesy Elsevier, Inc., |http://www.sciencedirect.com. Used with permission.
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Another
sequence
showing a cell
(A) elongating
and deforming
matrix struts (B)

Photos removed due to copyright restrictions.

See Fig. 7 in Freyman et al. “Micromechanics of Fibroblast Contraction of
a Collagen—GAG Matrix.” Exp Cell Res 269, no. 1 (2001): 140-153.
http://dx.doi.org/10.1006/excr.2001.5302
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Sequence shows
cell (A)
elongating on
matrix strut (B).
Later, adhesion
sites near cell
center are
released (C);
eventually one
end of cell fails
to attach and the
cell retracts
rapidly (D).
Later, the cell
elongates once
more (E) and the
process is
repeated.

Courtesy of Elsevier, Inc., |http://www.sciencedirect.com. Used with permission.
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FIG. 11. (a.,b) Sketches of cell elongation, showing attachment sites forming at cell extension. {(¢) Sketch of matrix strut buckling due to
force developed by the actin fibers in the cell, showing gap between cell and strut. (d) Free body diagram of forces, showing tension in the
actin fibers, compression in the matrix strut, and the resulting balance at the attachment site. (e,) Sketches showing cell attached at a strut
junction resulting in bending of the siruts due to the force developed by the cell. (g) Schematic plot of the resistive force provided by the matrix
struts for a given displacement imposed by the cell. Note that following the onsetof buckling, resistive force does not increase significantly

for increase in deformation.
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Conclusions on Micromechanics of
Fibroblast Contraction

« The aspect ratio of cells increases with
time and eventually saturates, just as the
force does.

 |nitiation of cell elongation occurs
stochastically.

 The force plateau most simply results
from buckling or bending of individual
struts in the matrix by cells.

 Matrix deformation (contraction) occurs as
a result of cell elongation, not cell
contraction.
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Tables 1 and 2, Figures 2, 3 and 4 in Freyman, T. M., et al. "Fibroblast
Contractile Force Is Independent of the Stiffness Which Resists the
Contraction.” Exp Cell Res 272 (2002): 153-162.
http://dx.doi.org/10.1006/excr.2001.5408
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FIG.5. Plot showing the effect of initial matrix stiffness on the average reduction in diameter of free-floating matrix disks over 2 weeks
in culture. The attached cell number does not vary significantly with time or between initial stiffness groups.

Courtesy of Elsevier, Inc.,|http://www.sciencedi rect.com. Used with permission.
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FIG. 6. Light micrographs of H&E-stained GMA sections of free-floating matrix samples showing cell distribution and matrix micro-
structure changes with time. Less stiff matrix disks are shown in a, b, and ¢ for time points 1, 6, and 15 days, respectively. Stiffer matrix
disks are shown in d, e, and f for time points 1, 6, and 15 days, respectively. Scale bar, 200 pm

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
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FIG. 7. Schematic showing the centripetal motion of adhesion sites and the centrifugal motion of cytoplasm. This attempts to explain the
phenomenon of simultaneous cell elongation and matrix contraction. (a) As the cell elon gates, due to cyvtoplasm motion, new adhesion sites

Courtesy of Elsevier, Inc., Ihttp://www.sciencedirect.com. Used with permission.
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Conclusions on the Effect of Matrix
Stiffness on Cell Contraction

« The contractile force generated by fibroblasts
was independent of matrix stiffness in the range
0.7 —10.7 N/m.

 Contractile forces generated by cells are force-
limited, not displacement-limited.

 As cells elongate, cell-matrix adhesion sites
hypothetically form at the cell periphery,
Increasing length of matrix strut under
compressive load and decreasing load required
to buckle the strut.
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