Thermodynamics of hydrogel swelling Applications of hydrogels in bioengineering

Last Day:	Structure of hydrogels
Today:	bioengineering applications of hydrogels Thermodynamics of hydrogel swelling
Reading:	
Supplementary Reading:	P.J. Flory, 'Principles of Polymer Chemistry,' Cornell University Press, Ithaca, pp. 464- 469, pp. 576-581 (Statistical thermodynamics of networks and network swelling)
	P.J. Flory, 'Principles of Polymer Chemistry,' Cornell University Press, Ithaca, pp. 495- 507 (Entropy of polymer-solvent mixing)

Announcements:

hydrogels

Thermodynamics of hydrogel swelling

Thermodynamics of hydrogel swelling

swelling V_s

Competing driving forces determine total swelling:

Description of cross-linked network

Expansion factor: α

$$\alpha_x \alpha_y \alpha_z = \alpha^3 = V_s / Vr = (V_2 + n_1 v_{m,1}) / V_r$$
 swelling

$$\begin{split} \varphi_{2,s} &= V_2 / (V_2 + n_1 v_{m,1}) \\ \varphi_{2,r} &= V_2 / V_r \end{split}$$

volume fraction of polymer in swollen gel volume fraction of polymer in relaxed gel

Starting point: thermodynamic description of simple polymer-solvent mixing:

Seek to derive an expression for the free energy of mixing:

Lattice model description of polymers: (Flory/Huggins) ENTHALPY OF MIXING:

Energy of contacts:

Lattice model description of polymers: (Flory/Huggins) ENTHALPY OF MIXING:

Lattice model description of polymers: (Flory/Huggins) ENTROPY OF MIXING:

Lattice model description of polymers: (Flory/Huggins) ENTROPY OF MIXING:

Image removed due to copyright reasons. Please see: Figure 110 in Flory, P. J. *Principles of Polymer Chemistry.* Ithaca, NY: Cornell University Press, 1953.

Lattice model description of polymers: (Flory/Huggins)

Description of cross-linked network

Assume cross-links are randomly placed; on average, all are equidistant:

v = number of subchains in cross-linked network $v_e =$ number of 'effective' subchains: tethered at both ends

M = MW of original chains $M_c = MW$ of subchains = MW between cross-links

Example: assume polymer chains have a molecular weight M = 4A and each 'subchain' has molecular weight A:

Two useful relationships:

 $\begin{array}{l} \nu = V_2 / v_{sp,2} M_c \\ \nu_e = \nu (1 - 2(M_c / M)) \end{array} \end{array}$

Elastic contribution to hydrogel free energy: ΔG_{el}

•Account for entropic retraction force that restrains swelling:

Elastic contribution to hydrogel free energy: ΔG_{el}

Elastic contribution to hydrogel free energy: ΔG_{el}

Predictions of Flory/Peppas theory

Varying $\phi_{2,r}$:

Predictions of Flory/Peppas theory

Varying χ :

Model parameters

µ1 ^{bath} [■]	chemical potential of water in external bath (= μ_1^{0})
μ ₁	chemical potential of water in the hydrogel
μ_1^0	chemical potential of pure water in standard state
ΔW_{12}	pair contact interaction energy for polymer with water
Z	model lattice coordination number
Х	number of segments per polymer molecule
Μ	Molecular weight of polymer chains before cross-linking
Mc	Molecular weight of cross-linked subchains
n ₁	number of water molecules in swollen gel
χ	polymer-solvent interaction parameter
k _B	Boltzman constant
Т	absolute temperature (Kelvin)
V _m ,1	molar volume of solvent (water)
V _{m,2}	molar volume of polymer
V _{sp,1}	specific volume of solvent (water)
V _{sp,2}	specific volume of polymer
V_2	total volume of polymer
Vs	total volume of swollen hydrogel
Vr	total volume of relaxed hydrogel
ν	number of subchains in network
ve	number of 'effective' subchains in network
ф ₁	volume fraction of water in swollen gel
φ _{2,s}	volume fraction of polymer in swollen gel
φ _{2,r}	volume fraction of polymer in relaxed gel

Key properties of hydrogels for bioengineering applications:

Further Reading

- 1. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. II. Swelling. *J. Chem. Phys.* **11**, 521-526 (1943).
- 2. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. *J. Chem. Phys.* **11**, 512-520 (1943).
- 3. Peppas, N. A. & Merrill, E. W. Polyvinyl-Alcohol) Hydrogels Reinforcement of Radiation-Crosslinked Networks by Crystallization. *Journal of Polymer Science Part a-Polymer Chemistry* **14**, 441-457 (1976).
- 4. Flory, P. J. *Principles of Polymer Chemistry* (Cornell University Press, Ithaca, 1953).
- 5. An, Y. & Hubbell, J. A. Intraarterial protein delivery via intimally-adherent bilayer hydrogels. *J Control Release* **64**, 205-15 (2000).
- 6. Brannonpeppas, L. & Peppas, N. A. Equilibrium Swelling Behavior of Ph-Sensitive Hydrogels. *Chemical Engineering Science* **46**, 715-722 (1991).
- 7. Chiellini, F., Petrucci, F., Ranucci, E. & Solaro, R. in *Biomedical Polymers and Polymer Therapeutics* (eds. Chiellini, E., Sunamoto, J., Migliaresi, C., Ottenbrite, R. M. & Cohn, D.) 63-74 (Kluwer, New York, 1999).
- 8. Hubbell, J. A. Hydrogel systems for barriers and local drug delivery in the control of wound healing. *Journal of Controlled Release* **39**, 305-313 (1996).
- 9. Jen, A. C., Wake, M. C. & Mikos, A. G. Review: Hydrogels for cell immobilization. *Biotechnology and Bioengineering* **50**, 357-364 (1996).
- 10. Nguyen, K. T. & West, J. L. Photopolymerizable hydrogels for tissue engineering applications. *Biomaterials* **23**, 4307-14 (2002).
- 11. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H. & Zhang, J. Physicochemical foundations and structural design of hydrogels in medicine and biology. *Annu Rev Biomed Eng* **2**, 9-29 (2000).