Materials with Biological Recognition (continued)

Last time:	Biological recognition <i>in vivo</i> Engineering biological recognition of biomaterials: adhesion/migration peptides
oday:	Engineering biological recognition of biomaterials: enzymatic recognition and cytokine signaling
Reading:	J.C. Schense et al., 'Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension,' <i>Nat. Biotech.</i> 18 , 415-419 (2000)
Supplementary Reading:	-

ANNOUNCEMENTS:

Cell adhesion on biomaterials:

Cell responses to non-biological, synthetic biomaterials

- 1. Protein adsorption
- 2. Denaturation (unfolding)?
- 3. Cell responses to expected and unexpected epitopes
- 4. Reorganization?
 - Vroman effect: protein exchange

Z CRITICAL FACTORS CONTROLLING ADHESION ON BIOMTLS; (1) PROTEIN ADSORPTION/PRESENSTATION (2) SUBSTRATE STIFFNESS

Control of cell attachment by mechanical properties of substrate

Polyelectrolyte multilayers (Rubner lab MIT):

Images removed due to copyright reasons.

Please see:

Mendelsohn, Jonas D., Sung Yun Yang, Jeri'Ann Hiller, Allon I. Hochbaum, and Michael F. Rubner. "Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films." *Biomacromolecules* 4 (2003): 96-106.

Lecture 12 Spring 2006

Control of cell attachment by mechanical properties of substrate

(Van Vliet and Rubner labs):

Graph removed due to copyright reasons. Please see: Figure 3 in Thompson, M. T., et al. *Biomaterials* 26 (2005): 6836–6845. Graph removed due to copyright reasons. Please see: Figure 4 in Thompson, M. T., et al. *Biomaterials* 26 (2005): 6836–6845.

Lecture 12 Spring 2006

Design of protein adsorption-resistant surfaces

Limiting nonspecific cell adhesion

comb	

Tailoring cell adhesion on biomaterials via immobilized ligands

Peptide integrin-binding GRGDSP sequence

PEO short 6-9 unit side chains for protein resistance

PMMA backbone anchors hydrophilic side chains

Lecture 12 Spring 2006

Peptides used to modulate cell adhesion on biomaterials

Peptide	Derived from	Conjugate	Role	
sequence		receptor		
IKVAV	Laminin α -chain	LBP110 (110 KDa	Cell-ECM	
2 RGD	BINDS INTEGRING	laminin binding	adhesion	-PEPTIDES MORE
W/1000.	FOID LOWER KD	protein)		ROBIT TUNN
(RGD)	Laminin α -chain,	Multiple integrins	Cell-ECM	HAIU
	fibronectin,		adhesion	INACT PROTEIN
	collagen			- EASH TO SHITHERE
YIGSR	Laminin β1-chain	$\alpha_1\beta_1$ and $\alpha_3\beta_1$	Cell-ECM	
		integrins	adhesion	IN HIGH
RNIAEIIKDI	Laminin γ-chain	unknown	Cell-ECM	PURITY
			adhesion	
HAV	N-cadherin	N-cadherin	Cell-cell	-V (BINDING
			adhesion	TO AFFINITY)
DGEA	Type I collagen	$\alpha_2\beta_1$ integrin	Cell-ECM	OR RECEPTOR
			adhesion	KINDING TO
VAPG	Elastase	Elastase receptor	Cell-ECM	PEPTIDES
		_	adhesion	MUNIMAC MUCH
KQAGDV	Fibrinogen γ-chain	β_3 integrins	Cell-ECM	TYPICALL
			adhesion	WEAKER THAN
			-	NATIVE PROTEIN
	_			

Lecture 12 Spring 2006

Lecture 12 Spring 2006

Cells respond to control of ligand density at the surface

Cells respond to control of ligand density at the surface

Cell migration on fibronectincoated substrates:

Graph removed due to copyright reasons. Please see: Figure 1b in Palecek, S. et al. "Integrin-ligand Binding Properties Govern Cell Migration Speed Through Cellsubstratum Adhesiveness." *Nature* 385 (6 February, 1997): 537 - 540.

> Graphs removed due to copyright reasons. Please see: Figure 2b in Palecek, S., et al. "Integrin-ligand Binding Properties Govern Cell Migration Speed Through Cellsubstratum Adhesiveness." *Nature* 385 (6 February, 1997): 537 - 540.

Alternative functionalization approaches: avidin-biotin chemistry

STREPTAVIDIN - E116C

Image removed due to copyright reasons. Please see: Patel, et al. *FASEB Journal* 12 (1998): 1447-454.

Controlling gross physical distribution of cells

Images removed due to copyright reasons. Please see: Patel, et al. *FASEB Journal* 12 (1998): 1447-454.

Cellular responses to physically patterned ligand- with nonadhesive background

Images removed due to copyright reasons. Please see: Patel, et al. *FASEB Journal* 12 (1998): 1447-454.

Biomaterials recognized by cell-secreted enzymes: synthetic ECMs

Enzymatic remodeling of synthetic ECMs

Cleavage of synthetic polymers by enzymes

Cell source	Enzyme	Native function	Acts on	Degradation Mechanism	Result
Various bacteria	lipases	protease	Polyesters, polyesteramides	··· • • · ·	Monomers or dimers
<i>Tritirachium album</i> (mold)	Proteinase K	Protease	Poly(lactide)		Monomers or dimers
Mammalian cells	esterases	protease	Poly(alkyl cyanoacrylates)	"	Water-soluble polymers
Mammalian cells	Papain, pepsin	proteases	polyesteramides ²		Untested
Mammalian cells	α -chymotrypsin	Serine protease	Aromatic peptides in polyesteramides ³ (e.g. Ala, Val, Leu)	III	Untested
Mammalian cells	elastase	protease	Polyesteramides		untested

Graph removed due to copyright reasons. Please see: Figure 10 in Paredes, N., et al. *J. Polym. Sci. A* 36, no. 1271 (1998). Graph removed due to copyright reasons. Please see: Figure 12 in Paredes, N., et al. *J. Polym. Sci. A* 36, no. 1271 (1998).

Lecture 12 Spring 2006

Esterase attack on poly(alkyl cyanoacrylates)

Degradation of 250 nm-diam. porous particles:

Graph removed due to copyright reasons. Please see: Figure 2 in Paredes, N., et al. *J. Polym. Sci. A* 36, no. 1271 (1998).

Lecture 12 Spring 2006

Engineering enzymatic recognition of hydrogel biomaterials: recognition of peptide motifs

Enzymatic activity in vivo on peptide sequences:^{5,6}

Cleavage Enzyme	Functions <i>in vivo</i>	Target amino acid sequences		
Plasminogen activator (urokinase or tissue-type plasminogen activator) / plasminogen → plasmin	Degradation of fibrin matrices, angiogenesis, tumor progression; urokinase can bind to cell surface receptor	on fibrinogen: Arg ₁₀₄ -Asp ₁₀₅ , Arg ₁₁₀ -Val ₁₁₁ , Lys ₂₀₆ -Met207, Arg ₄₂ -Ala ₄₃ , Lys ₁₃₀ - Glu ₁₃₁ , Lys ₈₄ -Ser ₈₅ , Lys ₈₇ -Met ₈₈		
Matrix metalloproteinases (soluble and cell-surface): e.g. Fibroblast Collagenase (MMP I)	Facilitate cell migration	Type I collagen: Gly ₇₇₅ -Ile ₇₇₆ In smaller peptides: Gly-Leu or Gly Ile bonds <u>-6-1</u> -6-L-		
Elastase	Elastin remodeling	Poly(Ala) sequences_A-A-A-A-		

Enzyme-sensitive crosslinks in hydrogel biomaterials

Effect of enzyme concentration

Gel containing collagenase sequence

Gel containing elastase sequence

Graph removed due to copyright reasons. Please see: Figure 1 in West, J.L. and J. A. Hubbell. "Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration." *Macromolecules* 32 (1999): 241-244. Graph removed due to copyright reasons. Please see: Figure 2 in West, J.L. and J. A. Hubbell. "Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration." *Macromolecules* 32 (1999): 241-244.

Cellular migration through enzymaticallyrecognized hydrogels

Biphasic migration response in 3D matrix:

Image removed due to copyright reasons. Please see: Figure 4 in Gobin, A.S. and J. L. West. "Cell Migration Through Defined, Synthetic ECM Analogs." *Faseb J* 16 (2002): 751-3.

Image removed due to copyright reasons. Please see: Figure 6 in Gobin, A.S. and J. L. West. "Cell Migration Through Defined, Synthetic ECM Analogs." *Faseb J* 16 (2002): 751-3.

Enzymatic recognition of biomaterials II: Enzymatic cross-linking/modification of biomaterials

IN SITU-FORMING HYDROGELS:

Example enzymes and their substrates:

INITIATORS

Enzyme	Substrate <i>in vivo</i>	Synthetic substrates	Result
Transglutaminase	Glutamines	Glu-containing peptides	Amide bond formation
Factor XIII	Fibrin γ-chain	Peptides derived from γ- chain FXIII binding site	Amide bond formation

Biomaterials that mimic signals from soluble factors or other cells

Cytokine receptor-based recognition of biomaterials

Figure by MIT OCW.

Diverse functions of cytokines:

- •Induce cell migration/stop cell migration
- Induce cell growth
- Induce differentiation
 - •Upregulate tissue-specific functions

Characteristics:

- BIND RECEPTORS W/HIGH AFFINITY
- •Typically potent, act at pmol concentrations
- •Synergize with other receptor signals •e.g. integrins

Changes in signaling achieved by cytokine immobilization on surfaces

Image removed due to copyright reasons. Please see:

Figure 1 in Ito, Y., et al. "Tissue Engineering by Immobilized Growth Factors." *Materials Science and Engineering C6* (1998): 267-274.

Image removed due to copyright reasons.

Please see:

Figure 1 in Ito, Y., et al. "Tissue Engineering by Immobilized Growth Factors." *Materials Science and Engineering C6* (1998): 267-274.

Local control of gene expression by non-diffusable Patterned immobilization of EGF: Cytokines:

Image removed due to copyright reasons. Please see:

Figure 4 in Ito, Y. "Regulation of Cell Functions by Micropattern Immobilized Biosignal Molecules." Nanotechnology 9 (1998): 200-204.

Surface immobilization can induce new function in cytokines: case of tethered EGF-triggered neuronal cell differentiation

Figure by MIT OCW.

PC12 cell line:

Signal doesn't trigger internalization of receptor; thus signal lasts longer and triggers differentiation

induced to proliferate by EGF

Signal triggers internalization of receptor; short signal triggers proliferation

NGF vs. EGF signaling in PC12 neuronal cells

(Traverse et al. 1994)

Voet & Voet. in Biochemistry. Further Reading

- 1.
- 2 Paredes, N., Rodriguez, G. A. & Puiggali, J. Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. Journal of Polymer Science. Part A: Polymer Chemistry 36, 1271-1282 (1998).
- Fan, Y., Kobayashi, M. & Kise, H. Synthesis and biodegradability of new polyesteramides containing peptide 3. linkages, Polymer Journal 32, 817-822 (2000).
- 4. O, S. C. & Birkinshaw, C. Hydrolysis of poly (n-butylcyanoacrylate) nanoparticles using esterase. Polymer Degradation and Stability 78, 7-15 (2002).
- Ekblom, P. & Timpl, R. Cell-to-cell contact and extracellular matrix. A multifaceted approach emerging. Curr Opin 5. Cell Biol 8, 599-601 (1996).
- Chapman, H. A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. 6. Curr Opin Cell Biol 9, 714-24 (1997).
- 7. Mann, B, K., Gobin, A, S., Tsai, A, T., Schmedlen, R, H, & West, J, L, Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22, 3045-51 (2001).
- West, J. L. & Hubbell, J. A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. 8. Macromolecules 32, 241-244 (1999).
- Gobin, A. S. & West, J. L. Cell migration through defined, synthetic ECM analogs. Faseb J 16, 751-3 (2002). 9.
- Sperinde, J. J. & Griffith, L. G. Control and prediction of gelation kinetics in enzymatically cross-linked 10. poly(ethylene glycol) hydrogels. Macromolecules 33, 5476-5480 (2000).
- Sperinde, J. J. & Griffith, L. G. Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) 11. hydrogels. Macromolecules 30, 5255-5264 (1997).
- Zhang, Z. Y., Shum, P., Yates, M., Messersmith, P. B. & Thompson, D. H. Formation of fibrinogen-based 12. hydrogels using phototriggerable diplasmalogen liposomes. *Bioconjug Chem* **13**, 640-6 (2002).
- Sanborn, T. J., Messersmith, P. B. & Barron, A. E. In situ crosslinking of a biomimetic peptide-PEG hydrogel via 13. thermally triggered activation of factor XIII. Biomaterials 23, 2703-10 (2002).
- 14. Collier, J. H. et al. Thermally and photochemically triggered self-assembly of peptide hydrogels. J Am Chem Soc **123**, 9463-4 (2001).
- 15. Collier, J. H. & Messersmith, P. B. Enzymatic modification of self-assembled peptide structures with tissue transolutaminase. Bioconjug Chem 14, 748-55 (2003).
- Schense, J. C., Bloch, J., Aebischer, P. & Hubbell, J. A. Enzymatic incorporation of bioactive peptides into fibrin 16. matrices enhances neurite extension. Nat Biotechnol 18, 415-9 (2000).
- Ito, Y. Tissue engineering by immobilized growth factors. Materials Science and Engineering C 6, 267-274 (1998). 17.
- 18. Ito, Y. Regulation of cell functions by micropattern-immobilized biosignal molecules. Nanotechnology 9, 200-204 (1998).
- 19. Kuhl, P. R. & Griffith-Cima, L. G. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat Med 2, 1022-7 (1996).
- Chen, G. & Ito, Y. Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine 20. stimulation. Biomaterials 22, 2453-7 (2001).
- 21. Ito, Y. Surface micropatterning to regulate cell functions. *Biomaterials* 20, 2333-42 (1999).