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Interactions of cells with their environment;
Engineering materials with biological recognition

 
Last time:   Polyelectrolyte hydrogel swelling thermodynamics 
    Applications of polyelectrolyte hydrogels: BioMEMS and drug delivery  
 
Today:     Biological recognition in vivo 

Engineering biological recognition of biomaterials: controlling cell adhesion, migration, 
 and cytokine signaling 

 
Reading: Y. Hirano and D.J. Mooney, ‘Peptide and protein presenting materials for tissue 

engineering,’ Adv. Mater. 16(1) 17-25 (2004) 
 Discher, Janmey, Wang, ‘Tissue Cells Feel and Respond to the 

Stiffness of Their Substrate,’ Science 310 1139-1143 (2005))
 
Supplementary Reading: ‘The Extracellular Matrix,’ pp. 1124-1150, Molecular Biology of the Cell, Lodish et al.  
 

ANNOUNCEMENTS:
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Tissue engineeringTissue engineering In situ formability: example: 
‘printable’ gels

Collagen printed on an agarose gel substrate:

Figure 14 in Burg, K. J., and T. Boland. "Minimally Invasive 
Tissue Engineering Composites and Cell Printing." IEEE Eng. Med. Biol. 22, no. 5 (2003): 84-91.
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Formability of hydrogels for tissue 
engineering

O.D. Velev and A.M. Lenhoff, Curr. 
Opin. Coll. Interf. Sci. 5, 56 (2000)
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Scaffolds with ordered, highly 
interconnected porosity

Tissue engineeringTissue engineering

PEG hydrogel scaffolds

Confocal fluorescence:

50 µm

Brightfield image:

A. Stachowiak et al, Advanced Materials (2005)

1 unit = 20 µm
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Degradable hydrogels: degradation by 
hydrolysis of cross-links (mechanism I)

Tissue engineeringTissue engineering
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Tissue barriers/conformal coatings
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Conformal coatingsConformal coatings

Applications: tissue barriers
Tissue barriers and conformal coatings

(After An and Hubbell 2000)
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Figure by MIT OCW.
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Engineering Biological Recognition in Synthetic 
Materials



Interactions of cells with their environment
Signals from extracellular 

environment:
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Incorporation of ECM signals in biomaterials

Synthetic biomaterial

Peptides or proteins tethered to biomaterial 
surface, examples of (1) and (3)

1. Cell adhesion/migration
2. Matrix remodeling
3. Cytokine signaling

(2) Matrix remodeling:
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The insoluble surroundings of the cell:
Functions of the native extracellular matrix (ECM):
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Collagen and Adhesions Proteins: Structure 
and Function

• Sixt et al. Immunity 22 (2005):19-25.
• Friedl et al. Eur. J. Immunol. 28 (1998): 2331.
• Lodish et al. Molecular Cell Biology
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Cell adhesionCell adhesion
Controlling cell attachment and 

migration 
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Adhesive interactions can play multiple roles 
simultaneously: supporting adhesion, delivery of 
biochemical signals, or delivering biomechanical 

signals
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Cell adhesionCell adhesion

Cells sense and respond to the 
stiffness of their substrate

(Discher, Janmey, Wang Science 310 1139-1143 (2005))
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Cell adhesion on biomaterials:
Cell responses to non-biological, synthetic biomaterials

1. Protein adsorption
2. Denaturation (unfolding)?
3. Cell responses to expected 

and unexpected epitopes
4. Reorganization?

• Vroman effect: protein 
exchange
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Control of cell attachment by mechanical properties of 
substrate

Polyelectrolyte multilayers (Rubner lab MIT):
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Figure by MIT OCW.
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Controlling cell response to biomaterials by building in 
ECM cues on a ‘blank slate’ background
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Design of protein adsorption-resistant surfaces
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Design of protein adsorption-resistant surfaces
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Limiting nonspecific cell adhesion
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Tailoring cell adhesion on biomaterials via 
immobilized ligands

Peptide integrin-binding GRGDSP sequence

PEO short 6-9 unit side chains for protein resistance

PMMA backbone anchors hydrophilic side chains
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Peptides used to modulate cell adhesion on 
biomaterials

Peptide
sequence

Derived from Conjugate
receptor

Role

IKVAV Laminin α-chain LBP110 (110 KDa
laminin binding
protein)

Cell-ECM
adhesion

RGD Laminin α-chain,
fibronectin,
collagen

Multiple integrins Cell-ECM
adhesion

YIGSR Laminin β1-chain α1β1 and α3β1

integrins
Cell-ECM
adhesion

RNIAEIIKDI Laminin γ-chain unknown Cell-ECM
adhesion

HAV N-cadherin N-cadherin Cell-cell
adhesion

DGEA Type I collagen α2β1 integrin Cell-ECM
adhesion

VAPG Elastase Elastase receptor Cell-ECM
adhesion

KQAGDV Fibrinogen γ-chain β3 integrins Cell-ECM
adhesion
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Cells respond to control of ligand density at the 
surface

Figure 11 in Irvine, D. J., A. V. Ruzette, A. M. Mayes, and L. G. Griffith. "Nanoscale Clustering of RGD
Peptides at Surfaces Using Comb Polymers. 2. Surface segregation of comb polymers in polylactide." 
Biomacromol 2 (2001): 545-56.ecules

Figure 12 in Irvine, D. J., A. V. Ruzette, A. M. Mayes, and L. G. Griffith. "Nanoscale Clustering of RGD
Peptides at Surfaces Using Comb Polymers. 2. Surface segregation of comb polymers in polylactide." 
Biomacromolecules 2 (2001): 545-56.
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Cells respond to control of ligand density at the 
surface

Lauffenburger lab

Figure by MIT OCW.
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