Stealth particles (continued)
Biology of vaccination

Last Time: carriers continued; avoiding the RES

Today: polymer brush theory for protein resistant stealth particles
basic biology of primary immune responses and vaccination

Reading: Plotkin and Orenstein, ‘The Immunology of Vaccination,’ from

Vaccines 3" ed., pp. 28-39
Abbas et al. ‘General properties of immune responses,’ from
Cellular and Molecular Immunology 4% ed. Pp. 3-16
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‘stealth’ particles: avoiding the reticulorendothelial system
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*Eliminate protein binding to particles
*Macrophage receptors unable to bind...
*Enhanced solubility of proteins/stability of particles
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Theory of protein-resistant surfaces
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Adsorption of small proteins
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Achieving protein-resistant stealth particles
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Adsorption of large vs. small proteins

MORT INVOLAED MODE L
FOR. LARGE PRUTEINS
Y0  Deskzs CAsS
OF ComPRISSING \AvE]

Figure 2. Large proteins can approach the surface only by
compressing the brush. The free energy penalty associated with
the compression mechanism favors secondary adsorption at
the outer edge of the brush.

Kinetic protein resistance:
Depends on L, and o, but@R
dependence still dominate

Figure removed for copyright reasons.
Please see: Figure 3 in Halperin, A. "Polymer Brushes that

Resist Absorption of Model Proteins: Design Parameters."
Langmuir 15 (1999): 2525-2533. 0”
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Comparison of theory with ~ MEASURING  REFRAGINE,  [NDEX

experiment AT SURFACE ~> (oWVERT (ass ROUND
Surface plasmon resonance measurements:
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Please see: Figure 7 in Efremova, et al. "Measurements of
P—-é Interbilayer Forces and Protein Adsorption on Uncharged

Lipid Bilayers Displaying Poly(ethylene glycol) Chains."
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Comparison of theory with

experiment

Figure removed for copyright reasons.

Please see: Figure 9 in Efremova, et al. "Measurements of
Interbilayer Forces and Protein Adsorption on Uncharged
Lipid Bilayers Displaying Poly(ethylene glycol) Chains."
Biochemistry 39 (2000):; 3441-51.

Figure removed for copyright reasons.

Please see: Figure 9 in Efremova, et al. "Measurements of
Interbilayer Forces and Protein Adsorption on Uncharged
Lipid bilayers Displaying Poly(ethylene glycol) Chains."
Biochemistry 39 (2000):; 3441-51.
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Additional benefits of PEGylated carriers: improved
carrier stability

Liposomes: : .
conventional liposome

liposome interior
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cell interior

semi-contact

cell interior

cell interior
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Synthesis of ‘stealth’ particles

e.g. Pluronics:

— PEO
— PPO

Image removed for copyright reasons.

Please see: Stolnik, et al. "Long Circulating Microparticulate
Drug Carriers." Advanced Drug Delivery Reviews 16 (1995): 195-214.
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Example stealth PEG = 5KDa, PLGA = 40 KDa

I
CH,0~~CH,~CH,~0—3C-CH-0=~+C—CH,~0—:-H

particle results: ,
PEGylated PLGA | i A
Fig. 1. Structure of the PEG-PLGA copolymer. D:'/. N

nanoparticles

(1) =

Block copolymer (T
localizes at
organic/aq.
solution interface

Poly(vinyl alcohol):
Adsorbs to surface of organic droplets to
provide initial stability to forming spheres



Block copolymer localization at agueous/polymer interfaces

1

1
CH,O—(—CH,—CHE-O—);(—C-?H—O—);(—C—CHE—D—};H
CH,

Fig. 1. Structure of the PEG-PLGA copolymer.

PEG = 5KDa, PLGA = 40 KDa

Double emulsion
synthesis

PEG chains line inner
ag. compartments-
minimize protein
denaturation
> Surface steric

barrier

_

Lecture 19 Spring 2006 14



TEM of nanoparticles

Image removed due to copyright restrictions.

Please see: Li, Y., et al. "PEGylated PLGA Nanoparticles as
Protein Carriers: Synthesis, Preparation and Biodistribution in
Rats." Journal of Control Release 71 (2001): 203-11.

Increased t,,, in blood:

Figure removed due to copyright restrictions.

Please see: Figure 7 in Li, Y., et al. "PEGylated PLGA Nanoparticles
as Protein Carriers: Synthesis, Preparation and Biodistribution in Rats."
Journal of Control Release 71 (2001): 203-11.

Release properties of diblock particles

Figure removed due to copyright restrictions.

Please see: Figure 6 in Li, Y., et al. "PEGylated PLGA Nanoparticles
as Protein Carriers: Synthesis, Preparation and Biodistribution in Rats."
Journal of Control Release 71 (2001): 203-11.

Altered biodistribution:

Graph removed due to copyright restrictions.

Please see: Li, Y., et al. "PEGylated PLGA Nanoparticles as

Protein Carriers: Synthesis, Preparation and Biodistribution in Rats."
Journal of Control Release 71 (2001): 203-11.
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Clinically-approved stealth carriers

) P -
PEG-GCSF (granulocyte colony stimulating factor, Amgen) 2002 P%%M\ =P
o Pegylated GCSF (cytokine) 'PR,M;’LMS
0 Reduction of febrile neutropenia associated with chemotherapy
Pegademase (Adagen) 1990
0 Pegylated adenosine deaminase (enzyme)
o0 Treatment of severe combined immunodeficiency (SCID)- hereditarny lack of adenosine deaminase
Pegaspargase (Oncaspar)
o0 Pegylated asparaginase (enzyme)
0 Treatment of leukemia
= Leukaemic cells cannot synthesize asparagines; asparagingse Kills cells by depleting
extracellular sources of this amino acid
Pegylated IFN-a2a (Pegasys) 2001
o0 Treamtent of hepatitis C
Doxil (Alza) 1995-2003
0 Pegylated liposomes carrying anti-cancer drug doxorubicin
o0 Improves treatment from daily 30min injections for 5 days every 3 weeks to once-a-month single
injections
o Approved for treatment of Karposi’s sarcoma, ovarian cancer, and breast cancer®
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Delivery into cells once the target tissue is reached:
Cell type-dependent endocytosis limits

Internalization of 200nm-diam particles by carcinoma cell line:

Image removed for copyright reasons.
Please see: Zuner, et al. J Contr Rel 71, 39 (2001).

Table removed for copyright reasons.
Please see: Table 1 in Zuner, et al. J Contr Rel 71, 39 (2001).
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Endpoint for most particles: endosomal compartments

Figure removed due to copyright restrictions.
Please see: Figure 2 in Chithranl, et al. Nano Lett 6 (2006): 662-668.

18



FOCUS TOPIC: INTEGRATING BIOLOGICAL
KNOWLEDGE INTO BIOMATERIALS DESIGN
FOR VACCINES

Basic Biology of Vaccination
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KEY EFFECTORS OF ADAPTIVE IMMUNITY

Image removed due to copyright reasons.
Please see: Abbas, A. K., and A. H. Lichtman. Cellular and Molecular Immunology. San Diego, CA: Elsevier, 2005. ISBN: 1416023895.
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THE CLONAL IMMUNE SYSTEM

é@?@@@

—> T CSUS N ADVY {UmAN)
> 25100 “10’6 DysTiNeT CLaMi—';S‘

—S> oNWY SsvSRAL oo T ceus AT MosT RESPoND
/ To WY INpwpuay AVTeN)

PRecursor. FReoueNst oF Anticen—SIefie. Clls ;

—-—

CD¥T 7V CeuL! [ N 209,000

é 0. 05, / VAINVE

COY* 7T CUs MW <% PAND VOGO LoD frgeNSic

Arstila et al. Science 286, 958 (1999)
Blattman et al. J. Exp. Med. 195, 657 (2002)
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Physiology of the primary

Immune response
é —_ G‘EN%ZK"\'E Wté Mop'l w’ S Image removed due to copyright restrictions.

Please see: Katakai, et al. JEM 200 (2004): 783-792.
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Biology of dendritic cells in T cell activation

Classical pathways of antigen CDS8+ T cells
processing and presentation:
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Antigen is one of (at least) two signals that must be
delivered by a vaccine

N

+DC ACTIVATION +ANTIGEN
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Signal 2 - costimulation \ CELLS
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B cell activation

Image removed due to copyright restrictions.
Please see: Abbas, A. K., and A. H. Lichtman. Cellular and Molecular Immunology. San Diego, CA: Elsevier, 2005. ISBN: 1416023895.
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Induction of immunological memory (the basis of vaccination)

Number of 5 : '
Pathogen-

specific T :
cells A ‘

. i i time
Antibody | | f
titer r
time
Mean f
antibody | ' i
affinities ‘ :
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OBJECTIVES OF VACCINATION

Image removed due to copyright restrictions.
Please see: Neutra, and Kozlowski. Nat Rev Immunol 6 (2006): 148-158.
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Prophylactic vs. therapeutic immunization

Two situations where vaccination is of interest;

(1) Therapeutic vaccine:

(2) Prophylactic vaccine:

Lecture 19 Spring 2006
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ROUTES OF IMMUNIZATION

Image removed due to copyright restrictions.
Please see: "Mitragotri." Nat Rev Immunol 5 (2005): 905-916.
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