
MIT 6.581/20.482J

7 February 2006 Tuesday

FOUNDATIONS OF ALGORITHMS AND COMPUTATIONAL TECHNIQUES IN SYSTEMS BIOLOGY Spring 2006

MOTIVATION/OVERVIEW

MOLECULAR LEVEL	CELLULAR LEVEL	IMAGING	
(atoms)	(concentration of		
	biomolecules)		
\checkmark		\checkmark	Fast Fourier Transform
\checkmark	\checkmark		Combinatorial Search
	\checkmark		Model Reduction
<u> </u>			Singular Value
•	•	•	Decomposition
\checkmark			Multipole Algorithm
\checkmark	\checkmark	\checkmark	Numerical Differentiation
\checkmark	\checkmark	\checkmark	Optimization
\checkmark	\checkmark		Newton Methods

PHYSICAL, CHEMICAL, & BIOLOGICAL MODELING OF PROTEINS

Proteins:

- biological polymers of about 20 amino acids polymers are any kind of large molecules made of repeating identical or similar subunits called monomers
- "perfect" homogeneous, pure synthesis
- around 10k copies in a cell
- linear, unbranched chains of a <u>unique sequence</u>
- generally fold to characteristic structure with no additional information

sequence <i>folding</i> (1D)	structure $(3D) \longrightarrow$	chemical functions	$\xrightarrow{\text{biological}} $	network functions
protein ↑ mRNA ↑ genome (DNA)	x-ray crystallography NMR	binding catalysis	synthesis/ degradation energy storage/ utilization gene expression development immune surveillance	control points – decision "robustness" time keepers oscillators important area of growth

Why Model?

- Understanding : model facilitates development of understanding reason for properties
 - mechanistic basis for function
 - disease
- Prediction
 - experiment planning
 - validate a model or select among models
- Design
 - perturbation : improve properties
 - intervention : repair