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This note is a brief description of the matrix Kronecker product and matrix stack algebraic operators. 
For a detailed treatment the reader is referred to [1]. 

The Stack Operator 

The stack operator maps an n × m matrix into an nm × 1 vector. The stack of the n × m matrix A, 
denoted AS , is the vector formed by stacking the columns of A into an nm × 1 vector. 

For example if 
a c 

A = (1)
b d 

2×2 

then its stack form is ⎤⎡ ⎢⎢⎣ 

a 
b 
c 
d 

⎥⎥⎦AS = . (2) 

4×1 

If C is an n ×m matrix comprising m column vectors {c1, c2, · · · cm}, where each ci is an n × 1 vector 

C = [c1, c2, · · · , cm]n×m (3) 

then ⎤⎡ ⎢⎢⎢⎣ 

c1 

c2 
. . . 

cm 

⎥⎥⎥⎦ 
CS = (4). 

nm×1 

1.1 Properties of the Stack Operator 

S1. If v ∈ IRn×1, a vector, then v = v. 

2. If A ∈ IRm×n, a matrix, and v ∈ IRn×1, a vector, then the matrix product (Av)S = Av. 
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3. trace(AB) = ((AT )S )T BS . 

The Kronecker Product 

The Kronecker product is a binary matrix operator that maps two arbitrarily dimensioned matrices into 
a larger matrix with special block structure. Given the n× m matrix An×m and the p× q matrix Bp×q ⎤⎡⎤⎡ 

a1,1 . . . a1,m b1,1 . . . b1,q 

A = ⎢⎣ 
⎥⎦ B = ⎢⎣ 

⎥⎦. . . . . . (5). . . . . .. .. . . . 
an,1 . . . an,m bp,1 . . . bp,qn×m p×q 

their Kronecker product, denoted A⊗ B, is the np× mq matrix with the block structure ⎤⎡ 
a1,1B . . . a1,mB 

. . .=A⊗ B ⎢⎣ 
⎥⎦ (6). . . ... . 

an,1B . . . an,mB 
np×mq 

For example, given 
1 2 1 2 3 

A = = (7)0 4 5 6−1 
2×2 

B2×3
2×3 

the Kronecker product A⊗ B is ⎤⎡ 

=A⊗ B 
⎢⎢⎣ 

1 2 3 2 4 6 
4 5 6 8 10 12 
0 0 0 −1 −2 −3 
0 0 0 −4 −5 −6 

⎥⎥⎦ . (8) 

4×6 
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2.1 Properties of the Kronecker Product Operator 

In the following it is assumed that A, B, C, and D are real valued matrices. Some identities only hold 
for appropriately dimensioned matrices. 

1. The Kronecker product is a bilinear operator. Given α ∈ IR , 

A ⊗ (αB) = α(A ⊗ B)

(αA) ⊗ B = α(A ⊗ B). (9)


2. Kronecker product distributes over addition: 

(A + B) ⊗ C = (A ⊗ C) + (B ⊗ C)

A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C). (10)


3. The Kronecker product is associative: 

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C). (11) 

4. The Kronecker product is not in general commutative, i.e. usually 

(A ⊗ B) = (B ⊗ A). (12) 

5. Transpose distributes over the Kronecker product (does not invert order) 

(A ⊗ B)T = AT ⊗ BT . (13) 

6. Matrix multiplication, when dimensions are appropriate, 

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD). (14) 

7. When A and B are square and full rank 

(A ⊗ B)−1 = (A−1 ⊗ B−1). (15) 

8. The determinant of a Kronecker product is (note right hand side exponents) 

det(An×n ⊗ Bm×m) = det(A)m det(B)n . (16)· 

9. The trace of a Kronecker product is 

trace(A ⊗ B) = trace(A) · trace(B). (17) 

10. Stack of a matrix multiplication, when dimensions are appropriate for the product ABC to be well 
defined, is 

(ABC)S = (CT ⊗ A)BS . (18) 
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