
Chapter 2 

Decision Making under Risk 

In the previous lecture I considered abstract choice problems. In this section, I will focus 

on a special class of choice problems and impose more structure on the decision maker’s 

preferences. I will consider situations in which the decision maker cares only about the 

consequences, such as the amount of money in his bank account, but he may not be able 

to choose directly from the set of consequences. Instead, he chooses from alternatives 

that determine the consequences probabilistically, such as a lottery ticket. 

In this lecture, I assume that, for any alternative x, the probability distribution on 

the set of consequences induced by x is given. That is, although decision maker does 

not know the consequence of choosing a given alternative, he is given the probability 

of each consequence from choosing that action. This is called decision making under 

risk. Such assumptions can be plausible in relatively few situations, such as chance 

games in a casino, in which there are objective probabilities. In most cases of economic 

interest, the alternatives do not come with probabilities. The decision maker forms his 

subjective beliefs about the consequences of his choices. This is called decision making 

under uncertainty. I will analyze the decision making under risk as an intermediary step 

toward analyzing decision making under uncertainty. 

2.1 Consequences and Lotteries 

Consider a finite set C of consequences. A  lottery is a probability distribution p : P 
C [0, 1] on C, where  p(c) = 1. The set of all lotteries is denoted by P . The  → c∈C 
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consequences are embedded in P as point masses on single lotteries. For any c ∈ C, I  will  

write c for both the consequence c and the probability distribution that puts probability 

1 on  c. The decision maker cares about the consequence that will be realized, but he 

needs to choose a lottery. In the language of the the previous lecture, the set X of 

alternatives is P . 

A lottery can be depicted by a tree. For example, in Figure 1, Lottery 1 depicts 

a situation in which the decision maker gets $10 with probability 1/2 (e.g. if a coin 

toss results in Head) and $0 with probability 1/2 (e.g. if the coin toss results in Tail). 

A lottery can be simple as in the figure, assigning a probability to each consequence, 

or compound as in Figure 2.3, containing successive branches. The representation of 

all lotteries as probability distributions incorporates the assumptions that the decision 

maker is consequentialist, meaning that he cares only about the consequences, and that 

he can compute the probability of each consequence under compounding lotteries. 

Lottery 1 

Figure 2.1: 

Representing the lotteries p as vectors, note that P is a |C| − 1 dimensional simplex. 

Hence, I will regard P as a subset of R|C| (one can envision it as a subset of R|C|−1 as 

well). Endowing R|C| with the standard Euclidean metric, note that P is a convex and 

compact subset. 

2.2	 Expected Utility Maximization – Representa

tion 

We would like to have a theory that constructs the decision maker’s preferences on the 

lotteries from his preferences on the lotteries. There are many of them. The most 
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well-known–and the most canonical and the most useful–one is the theory of expected 

utility maximization by Von Neumann and Morgenstern. In this lecture, I will focus on 

this theory. 

Definition 5 A relation º on P is said to be represented by a von Neumann-Morgenstern 

utility function u : C R if and only if → X X 
p º q ⇐⇒ U(p) ≡ u(c)p(c) ≥ u(c)q(c) ≡ U(q) (VNM) 

c∈C c∈C 

for each p, q ∈ P . 

This statement has two crucial parts: 

1.	 U : P → R represents º in the ordinal sense. That is, if U (p) ≥ U (q), then the 

decision maker finds lottery p as good as lottery q. And conversely, if the decision 

maker finds p at least as good as q, then  U (p) must be at least as high as U (q). 

2. The function U takes a particular form: for each lottery p, U (p) is the expected P 
value of u under p. That  is,  U(p) ≡ c∈C u(c)p(c). In other words, the decision 

maker acts as if he wants to maximize the expected value of u. For instance, 

the expected utility of Lottery 1 for the decision maker is E(u(Lottery 1)) = 
1 
2
u(10) +
1 

2
u(0).1 

2.3	 Expected Utility Maximization – Characteri

zation 

The main objective of this lecture is to explore the conditions on preferences under which 

the von-Neumann Morgenstern representation in (VNM) is possible. In this way, one 

may have a better insights into what is involved in expected utility maximization. 

First, as explained above, representation in (VNM) implies that U represents º in the 

ordinal sense as well. But, as we have seen in the previous lecture, ordinal representation 

implies that º is a preference relation. This gives the first necessary condition. 

Axiom 2 (Preference) º is complete and transitive. R
1If C were a continuum, like R, we would compute the expected utility of p by u(c)p(c)dc. 
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Second, in (VNM), U is a linear function of p, and hence it is continuous. That 

is, (VNM) involves continuous ordinal representation. Hence, by Theorem 3 of the 

previous section, it is also necessary that º is continuous. This gives the second necessary 

condition. 

Axiom 3 (Continuity) º is continuous. 

Recall from the previous lecture that continuity means that the upper- and lower-

contour sets {q|q º p} and {q|p º q} are closed for every p ∈ P . In this special setup, 

a slightly weaker version of the continuity assumption suffices: for any p, q, r ∈ P , the  

sets {α ∈ [0, 1] |αp + (1  − p) q º r} and {α ∈ [0, 1] |r º αp + (1  − p) q} are closed. Yet 
another version of this assumption is that for any p, q, r ∈ P , if  p Â r, then  there  exist  

a, b ∈ (0, 1) such that ap + (1  − a)r Â q Â bp + (1  − r)r. 

By Theorem 3, Axioms 2 and 3 are necessary and sufficient for a representation by 

a continuous  function  U . The von Neumann and Morgenstern representation imposes a 

further structure on U , requiring that it is in fact linear in probabilities. This linearity 

condition corresponds to the following condition on the preference, which is called The 

Independence Axiom. 

Axiom 4 (Independence) For any p, q, r ∈ P , and  any  a ∈ (0, 1], ap + (1  − a)r º 

aq + (1  − a)r ⇐⇒ p º q. 

That is, the decision maker’s preference between two lotteries p and q does not change 

if we toss a (possibly unfair) coin and give him a fixed lottery r if “tail” comes up. Let p 

and q be the lotteries depicted in Figure 2.2. Then, the lotteries ap + (1  − a)r and 

aq + (1  − a)r can be depicted as in Figure 2.3, where we toss a coin between a fixed 

lottery r and our lotteries p and q. Axiom 4 stipulates that the decision maker would 

not change his mind after the coin toss. Therefore, the Independence Axiom can be 

taken as an axiom of “dynamic consistency.” 

The Independence Axiom imposes a structure on the indifference  sets that is identical  

to the structure of the isocurves of a linear function U . Together with the continuous 

representation theorem, this leads to an expected utility representation. In the sequel, 

I will describe the structure in detail and prove that the above axioms are sufficient for 

an expected utility representation. Towards this end, the following exercise lists some 
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Figure 2.2: Two lotteries 
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useful implications of the Independence Axiom. You should prove the listed properties 

before you proceed. 

Exercise 1 For any preference relation º that satisfies the Independence Axiom, show 

that the following are true. 

1. For any p, q, r, r0 ∈ P with r ∼ r0 and any a ∈ (0, 1], 

ap + (1  − a)r º aq + (1  − a)r0 ⇐⇒ p º q. (2.1) 

2. For any p, q, r ∈ P and any real number a such that ap+(1 − a) r, aq+(1− a)r ∈ P , 

if p ∼ q, then  ap + (1  − a) r ∼ aq + (1  − a)r. (2.2) 

3. For any p, q ∈ P with p Â q and any a, b ∈ [0, 1] with a > b, 

ap + (1  − a) q Â bp + (1  − b) q. (2.3) 

4. There exists cB, cW ∈ C such that for any p ∈ P , 

c B º p º c W . (2.4) 

[Hint: use completeness and transitivity to find cB, cW ∈ C with cB º c º cW for 

all c ∈ C; then use induction on the number of consequences and the Independence 

Axiom.] 

These properties can be spelled out as follows. First, recall the situation considered 

by the Independence Axiom: we toss a coin; if it comes head, the decision maker faces 

p or q depending his choice, and if it comes tail, he faces r. The  first property states 

that it does not matter whether he faces the same lottery in case of tail or two different 

lotteries that he is indifferent to. For an explanation of the second property note that 

in the situation considered by the Independence Axiom, according to the axiom, the 

decision maker would be indifferent between the two compounding lotteries if he were 

indifferent between p and q. This corresponds to (2.2) for a ∈ [0, 1]. The property states 

more generally that the statement remains true even if a is not in [0, 1], in which case 

the problem couldn’t be represented as a choice between two compounding lotteries. 
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The third property probability is a monotonicity probability. It simply states that when 

a decision maker faces a situation in which he can end up a better lottery p or worse 

lottery q, then he would prefer higher probabilities of p to lower ones. Finally, the 

last probability states that there are best and worst consequences (by transitivity and 

completeness) and they are also best and worst lotteries (by monotonicity). Using these 

properties, one can easily prove the main result in this lecture: 

Theorem 4 A relation  º on P can be represented by a von Neumann-Morgenstern 

utility function u : C R as in (VNM) if and only if º satisfies Axioms 2, 3, and 4. → 

Moreover, u and ũ represent the same preference relation if and only if ũ = au + b for 

some a >  0 and b ∈ R. 

Proof. Since we know already that representation in (VNM) implies Axioms 2, 3, and 4, 

I will only prove the converse. As in (2.4), let cB, cW ∈ C be such that cB W for º p º c

every p ∈ P . If  cB ∼ cW , then by transitivity, the decision maker is indifferent between 

everything, and hence u (c) ≡ 0 for all c satisfies the representation. Assume cB Â cW , 

and define φ : [0, 1] → P by φ (t) =  tcW + (1  − t) cB . By (2.3), for any t, t0 ∈ [0, 1], 

φ (t) º φ (t0) ⇐⇒ t ≥ t.	 (2.5) 

Then, Lemma 1 of the previous lecture implies that for every p ∈ P , there exists a 

unique U (p) ∈ [0, 1] such that 

p ∼ φ (U (p)) .	 (2.6) 

First observe that U indeed represents º in the ordinal sense: for any p, q ∈ P , 

p º q φ (U (p)) º φ (U (q)) U (p) ≥ U (q) .⇐⇒	 ⇐⇒ 

[Here, the first is by (2.2) and (2.6), and the second is by (2.5).] In order ⇐⇒	 ⇐⇒ 

to show that U has the specific structure in (VNM), it suffices to show that U is linear. 

That is, for any a ∈ R and any p, q ∈ P with ap + (1  − a) q ∈ P , 

U (ap + (1  − a) q) =  aU (p) + (1  − a) U (q) .	 (2.7) 

But, since p ∼ φ (U (p)) and q ∼ φ (U (q)), 

ap + (1  − a) q	 ∼ aφ (U (p)) + (1 − a) φ (U (q)) 

= φ (aU (p) + (1  − a) U (q)) , 
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proving (2.7) by definition (2.6) of U . [Here,  the  indifference is by (2.1) and the equality 

is by definition of φ.] 

By the last statement in Theorem 4, the representation is “unique up to affine trans

formations”. That is, a decision maker’s preferences do not change when we change 

his von Neumann-Morgenstern (VNM) utility function by multiplying it with a positive 

number, or adding a constant to it, but they do change when we transform it through 

a non-linear transformation. In that sense, (VNM) representation is “cardinal”. Recall 

that, in ordinal representation, the preferences do not change even if the transformation 

is non-linear, so long as it is increasing. For instance, under certainty, v = 
√
u and 

u represent the same preference relation, while (when there is uncertainty) the VNM 

utility function v = 
√
u represents a very different set of preferences on the lotteries 

than those are represented by u. 

2.4 Indifference Sets under Independence Axiom 

In the sequel, I will explore the structure imposed by the Independence Axiom on the 

indifference sets in more detail, explaining the logic of the representation. Recall from 

the previous lecture that Axioms 2 and 3 imply that the indifference sets are closed. 

The Independence Axiom has two further implications on the indifference sets: 

1. The indifference sets on the lotteries are straight lines (i.e. hyperplanes). 

2. The indifference sets, which are straight lines, are parallel to each other. 

To illustrate these facts, consider three prizes z0, z1, and  z2, where  z2 Â z1 Â z0. 

A lottery  p can be depicted on a plane by taking p (z1) as the first coordinate (on the 

horizontal axis), and p (z2) as the second coordinate (on the vertical axis). p (z0) is 

1 − p (z1) − p (z2). [See Figure 2.4 for the illustration.] Given any two lotteries p 

and q, the convex combinations ap + (1  − a) q with a ∈ [0, 1] form the line segment 

connecting p to q. Now,  taking  r = q, we can deduce from (2.2) that, if p ∼ q, then  

ap + (1  − a) q ∼ aq + (1  − a)q = q for each a ∈ [0, 1].  That is,  the line segment  

connecting p to q is an indifference curve. Moreover, if the lines l and l0 are parallel, 

then α/β = |q0| / |q|, where  |q| and |q0| are the distances of q and q0 to the origin, 

respectively. Hence, taking a = α/β, we compute that p0 = ap + (1  − a) z0 and q0 = 
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Figure 2.4: Indifference curves on the space of lotteries 

aq+ (1− a) z0. Therefore, by (2.2), if l is an indifference curve, l0 is also an indifference 

curve, showing that the indifference curves are parallel. 

These two properties in the special case allows one to construct a utility function 

that represents the preferences in the sense of (VNM) as follows. Line l can be defined 

by equation u1p (z1) + u2p (z2) =  c for some u1, u2, c  ∈ R. Since  l0 is parallel to l, 

then l0 can also be defined by equation u1p (z1) + u2p (z2) = c0 for some c0. Since  the  

indifference curves are defined by equality u1p (z1) + u2p (z2) = c for various values of c, 

the preferences are represented by 

U (p) =  0 + u1p (z1) + u2p (z2) 

≡ u(z0)p(z0) + u(z1)p (z1) + u(z2)p(z2), 
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where 

u (z0) = 0, 

u(z1) =  u1, 

u(z2) =  u2, 

giving the desired representation. 

I will now establish the above two facts, namely the indifference sets are hyperplanes 

and parallel to each other, more generally. Using these facts, I will describe a general 

way to construct the VNM utility function u–similar to the example above. I will 

also show that ũ must be an affine transformation of u, in order to represent the same 

preference relation. Those who are not interested may skip it and follow the subsequent 

lectures. 

I will first show that the indifference set I (p) is a hyperplane. That is, 

I (p) = (p + V (p)) ∩ P 

for some linear subspace  V (p) of R|C|. Note  that  V (p) is a linear subspace means that 

ax + by ∈ V (p) for any x, y ∈ V (p) and any real numbers a and b. For simplicity, I will 

assume that p is in the relative interior of p. 

Proposition 1 Under Axioms 2 and 4, for every p in the relative interior of P , the  

indifference set I (p) is a hyperplane. 

Proof. Define 

V (p) = {a (q − p) |q ∈ I (p) , a  ∈ R} . 

To show that V (p) is a linear subspace, take any x = a (q − p) , y  = b (r − p) ∈ V (p), 

where a and b are real numbers and q ∼ p ∼ r. For arbitrary α, β ∈ R, I  show  that  

z = αx + βy ∈ V (p). Now,  since  q, r ∈ P and p is in the relative interior of P , there  

exists λ = 06 such that s = λαaq +λβbr +(1− λαa − λβb) p ∈ P . Since  z = λ−1 (s − p), 

it suffices to show that s ∈ I (p). Indeed, 

s = λαaq + λβbr + (1− λαa − λβb) p 

∼ λαap + λβbr + (1− λαa − λβb) p = λβbr + (1− λβb) p 

∼ λβbp + (1− λβb) p = p, 
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where both indifferences are by (2.2). 

To show that (p + V (p))∩ P = I (p), it  suffices to show  that for  any  a (q − p) ∈ V (p) 

with a (q − p) + p ∈ P , a (q − p) + p ∼ p. But  since  q ∈ I (p) and a (q − p) + p = 

aq + (1− a) p, this is true by (2.2).  

Moreover, the hyperplanes I (p) and I (q) are parallel: 

Proposition 2 For any p and q in the interior of P , the indifference sets I (p) and 

I (q) are parallel hyperplanes. That is, I (p) = (p + V ) ∩ P and I (q) = (q + V ) ∩ P for 

some linear subspace V . 

Proof. It suffices to show that V (p) = V (q) in the previous proposition and its proof. 

That is, for any a (p0 − p) with p0 ∈ I (p) and a ∈ R, there  exist  b ∈ R and q0 ∈ I (q) such 

that a (p0 − p) = b (q0 − q). The last equality can be written as q0 = q + (a/b) (p0 − p). 

Since q is in the interior and p, p0 ∈ P , there  exists  b such that q0 ∈ P and a/b < 0. Let  
−a/b 1r = 
1−a/b p +

1−a/b q ∈ P . Then, q = a/bp + (1− a/b) r and q0 = a/bp0 + (1− a/b) r. 

Since p ∼ p0,  this implies by (2.2)  that  q ∼ q0. 

Now, excluding the trivial case of cB ∼ cW , assume that cB Â cW . Then, for any 

interior p,  we must have  cB Â p Â cW . In that case, together with the last proposition, 

Lemma 1 of the previous lecture implies that the dimension of dimV ≥ dimP − 1. 

For otherwise, one could connect cB to cW without intersecting I (p). Moreover, since 

cB Â cW , I (p) =6 P . Hence, dimV = dimP − 1 = |C| − 2. In that case, there exists 

u ∈ RC \ {0} such that © ª 
V = x ∈ RC |u · x = 0, 1 · x = 0  , (2.8) P 

where 1 x = = 0 is the condition implied by the fact that x = a (q − p) for some c· xc 

probability vectors p and q. Let  U (V ) be the set of u ∈ RC \ {0} that satisfy (2.8). Since 

dimV = dimP − 1, U (V ) is one-dimensional: if u, u0 ∈ U (V ), then  u0 = au for some 

a ∈ R. By  definition of V , 

p ∼ q ⇐⇒ u · (p − q) = 0. 

Hence, U (V ) is the set of utility functions that result in the indifference sets ∼. To  make  

sure that the indifference sets are ranked correctly, one also imposes ucB > ucW . This  

is another way to construct the set of von-Neumann and Morgenstern utility functions 

and prove that the representation is unique only up to affine transformations. 
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