Chapter 12. Meeting 12, History: Iannis Xenakis

12.1. Announcements

- Musical Design Report 3 due 6 April
- · Start thinking about sonic system projects

12.2. Quiz

• 10 Minutes

12.3. Xenakis: Background

- An architect, mathematician, music theorist, and composer
- 1958: Designed Philips Pavilion for Brussels Worlds Fair as assistant of Le Corbusier (1887-1965)

© Le Corbusier; Iannis Xenakis; Edgard Varèse. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

© Iannis Xenakis. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- Early tape music: Diamorphoses (1957), Concret PH (1958), Orient Occident (1960)
- · Innovative early instrumental music based on geometries and procedures

Courtesy of Pendragon Press. Used with permission.

- · Proposed models of granular synthesis after research of Gabor
- Proposed and developed a wide range of music technologies for creative applications

12.4. Xenakis: History

- · Fought in Greek resistance to Nazi occupation during World War II
- · Moved to France, began work with Le Corbusier, heard music of Schaeffer
- · Studied composition with Olivier Messiaen
- 1955: "The Crisis of Serial Music" (Xenakis 1955)
- 1963: first edition of text Formalized Music
- 1967-1972: professor at Indiana University, Bloomington
- 1972: creates the Centre d'Etudes de Mathematiques et Automatiques Musicale (CEMAMu) near Paris
- 1972-1989: professor at Sorbonne University in Paris

12.5. Xenakis: Pithoprakta and Achorripsis

- *Pithoprakta* (1955-56) and *Achorripsis* (1956-57): composed with systems based on probability and statistics
- Employed techniques of "stochastic music": specify statistical trends, densities, and ranges rather then all note parameters
- A procedural approach to composition
- A response to the "Crisis of Serialism" (Xenakis 1955)
- "But other paths also led to the same stochastic crossroads -- first of all, natural events such as the collision of hail or rain with hard surfaces, or the song of cicadas in a summer field. These sonic events are made out of thousands of isolated sounds; this multitude of sounds, seen as a totality, is a new sonic event. This mass event is articulated and forms a plastic mold of time, which itself follows aleatory and stochastic laws." (Xenakis 1992, p. 9)

12.6. Listening: Xenakis

• Achorripsis, (1956-1957) [4:50 to 6:41]

12.7. Reading: Xenaxis, Xenakis on Xenakis

- Xenakis, I. 1987. "Xenakis on Xenakis." Perspectives of New Music 25(1-2): 16-63.
- What was Xenakis's early background in music and sound?
- Throughout his writings Xenakis talks about the pressures and problems of the Conservatory, Instruments, and Solfege: what is he referring to?
- Xenakis has particular relationship with the visual, graphical, and drawn approaches to thinking about music. Explain this relationship.
- In what ways does Xenakis imagine that technology will change the role of music in people's lives?

12.8. The Stochastic Music Program

• 1961: Xenakis gains access to an IBM 7090 at IBM France

Courtesy of IBM Corporate Archives. Used with permission.

- Programs the Stochastic Music Program (SMP) based on techniques used for Achorripsis
- System produces "score tables" that are transcribed into Western notation

79										
JW= 1	A= 7.7	A= 7.71 NA= 67 Q[1]=0.09/0.15/0.16/0.16/0.15/0.02/0.08/0.13/0.06/								
N	TA	CLAS	INST	н	VIGL1	VIGL2	VIGL3	DUREE	DYNAM	
1	0.	8	10	33.0	0.	0.	0.	0.	22	
2	0.07	6	41	25.9	0.	.0.	0.	13.94	54	
3	0.09	2	1	60.7	0.	0.	0.	3.98	15	
4	0.14	3		20.0	u.	0.	0.	0.89		
2	0.24	3	20	50.1	0.	0.	0.		56	
2	0.20	7	25	40.1	0.	<u>.</u>	0.	0		
	0.55	ĥ	10	33.0	0.	0.	0.	0.	11	
	0.54	5	34	26.4	-8.0	- 10.0	-6-0	4.72	53	
10	0.48	8	38	24.1	G.	0.	0.	0.	54	
11	0.72	2	5	42.0	0.	0.	0.	1.39	22	
12	0.83		3	43.4	0.	0.	0.	1.60	. 15	
13	0.85	2		58.3	0.	0.	0.	1.59	56	
14	0.98	4	3	34.0	0.	0.	0.	1.76	55	
15	1.23	4	2	42.0	0.	0.	0.	0.74	**	
16	1.26	2	6	43.4	0.	0.	0.	2.12	15	
17	1.28	3	2	61.9	0.	0.	0.	1.70	2	
18	1.30	2	3	55.7	0.	0.	0.	0.29	38	
19	1.34	2	3	58.1	0.	0.	0.	2.97	13	
20	1.35	8	5	64.4	0.	0.	0.	0.	31	
21	1.37	3.	2	4.1.4	0.	0.	0.	0.	22	
22	1.52	4	2	49.8	0.	0.	0.	0.02	53	
23	1.59	5	32	46.7	-13.0	14.0	-11.0	4.10	25	
24	1.63	1	28	44.7	0.	0.	0-	0.		
25	1.68	0	.38	41.5	0.	0.	0.	13.00	17	
20	1-73	4	*	40.4	0.	0.	0.	0.00	13	
21	1.13	2		10.4	0.	.	0.	0.04	52	
20	1.05	2	33	41 1	0.	0.	0	0.79	14	
30	1.95	2	÷	40.1	0.	0.	0.	2.34	48	
31	2.07	1	2	41.2	0.	0.	0.	1.21	9	
32	2.19	ĩ	2	0.	0.	0.	0.	8.63	56	
33	2.33	ŝ	16	47.8	-38.0	-24.0	-31.0	4.20	19	
34	2.56	9	1	63.9	0.	0.	0.	1.84	54	
35	2.61	5	22	67.6	-37.0	-50.0	31.0	12.97	41	
36	2.67	8	46	23.4	0.	0.	0.	0.	33	
37	2.75	4	1	67.9	0.	0.	0.	1.52	51	
38	2.78	9	2	70.3	0.	0.	0.	6.05	6	
39	2.92	4	4	25.1	0.	0.	• 0.	0-48	52	
40	2.93	4	2	73.1	0.	0.	0.	1.02	25	
41	2.98	7	42	25.9	0.	0.	0.	0.	43	
42	3.08	4	2	54.7	0.	0.	. 0.	0.95	38	
43	3.15	5	45	24.3	32.0	-20.0	26.0	5.78	60	
44	3.17	5	43	38.4	21.0	-20.0	17.0	9.33	33	
45	3.22	4	2	67.2	0.	. 0.	0.	0.34	00	
40	5.22	8	41.	55.0	0.	0.	0.	0.		
47	3.25	1	2	57.0	0.	0.	0.	2.50	-3	
40	3.34	,	;	0.	0.	0.	0.	17.06	10	
50	3.67		13	58.3		0.	0.	0.	41	
	3.01	0		34.3			· ·			

Source: Xenakis (1971). © Scott Foresman/Pearson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- 1962: ST/10-1, 080262 (1956-1962) was premiered at IBM France
- · Numerous related ST compositions were created
- 1965: Complete program, in Fortran, published and distributed (Xenakis 1965)

12.9. The Stochastic Music Program and Density

- Employed density as a compositional parameter at many levels
- Method

DBM

- 1. Duration of each movement is determined
- 2. The mean density of notes during a movement is calculated (in events per unit of time)

3. Percentage of events given to each timbre class is determined

Source: Xenakis (1971). © Scott Foresman/Pearson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- 4. For each event, the starting time point within the movement is calculated
- 5. From previously selected timbre classes, an instrument is chosen
- 6. A random chromatic pitch is chosen (as a shift of the instrument's previous note)
- 7. The duration of the note is determined based on an instrument-specific mean
- 8. The events dynamic contour is selected form a list of 44 options

Fig. 56 Table of the 44 dynamic forms: a linear combination of 4 mean dynamic values, ppp. p. f. ff.

Source: Xenakis (1971). © Scott Foresman/Pearson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

12.10. Listening: Xenakis

- Xenakis, ST-10, 1962
- Xenakis, Atrées, 1960

- Xenakis, ST-48, 1967
- Xenakis, ST-4

12.11. Reading: Xenaxis, Free Stochastic Music

- Xenakis, I. 1971. "Free stochastic Music." In *Cybernetics, art and ideas*. J. Reichardt, ed. Greenwich: New York Graphic Society. 124-142.
- Numerous publications include related/identical material
 - Xenakis, I. 1965. "Free Stochastic Music from the Computer. Programme of Stochastic music in Fortran." *Gravesaner Blätter* 26.
 - Xenakis, I. 1992. Formalized Music: Thought and Mathematics in Music. Indiana: Indiana University Press.

- · How does Xenakis describe the public reaction to the use of computers in music?
- · Xenakis describes mental mechanisms: are these just rules or mathematics?
- Xenakis imagines two new roles for contemporary composers: what are they?
- What are some of the advantages that Xenakis offers through the use of electronic brains?

12.12. Composing with Densities using TM TimeFill and a Noise Instrument

- TM LineGroove produces non-overlapping, linear events
- TM TimeFill will fill a time region with events, where position within the time span is determined by a ParameterObject
- Total number of events is determined by a ParameterObject
- Look at TM TimeSegment for a way to divide a texture into segments, each with independent fill densities
- Command sequence:
 - emo cn
 - tmo tf
 - tin a 80
 - tie t 0,30
 - total event count is defined as static texture parameter, not a ParameterObject

tie s3 600

• start position within texture normalized within unit interval

tie d0 rb,.3,.3,0,1

• durations are independent of start time

tie r cs,(mv,a $\{.01\}$ b $\{1.5\}$ c $\{3\}$: $\{a=20 | b=1 | c=1\}$)

• must reduce amplitudes

tie a ru,.5,.9

• eln; elr; elh

12.13. Composing with Densities using TM TimeFill and a Single Sample

- Total number of events is determined by the combination of two ParameterObjects with IterateCross
- Command sequence:
 - emo cn
 - tmo tf
 - tin a 32
 - set a file path to an audio file

tie x6 cf,/Volumes/xdisc/_sync/_x/src/martingale/martingale/audio/27980-high-slow.aif

• start position within audio file in seconds

tie x5 ru,0,1

• vary a low pass filter start and end frequencies

tie x2 mv,a $\{200\}$ b $\{1000\}$ c $\{10000\}$: $\{a=6 | b=2 | c=1\}$

tie x3 mv,a $\{200\}b\{1000\}c\{10000\}:\{a=6|b=2|c=1\}$

- total event count is defined as static texture parameter, not a ParameterObject tie s3 500
- start position within texture normalized within unit interval tie d0 ic,(rg,.2,.1,0,1),(rg,.7,.1,0,1),(bg,rc,(0,1))
- durations are independent of start time
 - tie r cs,(whps,e,(bg,rp,(5,10,15)),0,.010,.100)
- must reduce amplitudes

tie a ru,.1,.3

• eln; elr; elh

21M.380 Music and Technology: Algorithmic and Generative Music Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.