
Chapter 21. Meeting 21, Languages: Synthesis with Code 

21.1. Announcements 

• Music Technology Case Study Final due Today, 24 November 

• Sonic System Project Report due Thursday, 3 December 

• Last quiz: Thursday, 3 December 

21.2. Quiz Review 

• ? 

21.3. Modern Music-N 

• 1985: Csound 

• Command-line program 

• Currently available for many platforms, with many interfaces 

• http://www.csounds.com 

21.4. Csound: Score, Orchestra, and CSD Files 

• Orchestra (a .orc file) defines synthesis processing and interconnections (instruments) 

• Score (a .sco file) defines control information (events and parameters) 

• A CSD file combines the score and orchestra into a single file delimited by XML-style markup 

• Outermost: <CsoundSynthesizer> </CsoundSynthesizer> 

• Orchestra: <CsInstruments> </CsInstruments> 

• Score: <CsScore> </CsScore> 

21.5. Csound: Orchestra Syntax: Instrument Blocks 

• A quasi programming language, closer in way to an assembly language 
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Orchestra procedures can be extended with Python (Ariza 2008) 

•	 Consists of statements, functions, and opcodes 

•	 Opcodes are unit generators 

•	 Comments: start with a semicolon 

•	 Instruments in blocks, named with a number: 

•	 Start marker: “instr” and a number 

•	 End marker: “endin” 

•	 Trivial example instrument definition 

instr 100

 ; comments here!


endin


21.6. Csound: Orchestra Syntax: Signals 

•	 Signals are created and interconnected (patched) within instrument blocks 

•	 Signals: cary streams of amplitude values as numbers within the dynamic range (16 bit audio uses 
integers from -32768 to 32768) 

•	 Signal paths (like patch cords) are named variables 

•	 Signal variables can be at different rate resolutions depending on the first letter of the variable 
name 

•	 a-rate: Audio, name starts with an “a” (e.g. aNoise) 

•	 k-rate: Control signals, name starts with an “k” (e.g. kEnvl) 

•	 i-rate: Initialization values, name starts with an “i” (e.g. iFq) 

•	 Example 

aNoise random -12000, 12000


•	 Opcodes: unit generators 

•	 Syntax uses spaces and commas to delineate:


Provide variable, opcode, and space-separated parameter arguments


destinationSignal  opcodeName arg1, arg2, ...
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•	 Example: “random”; takes two arguments: min and max 

•	 Example: “outs”: takes two arguments: two signals 

•	 Example 

instr 100

 aNoise random -12000, 12000


 outs aNoise, aNoise

endin


21.7. Csound: Score Syntax 

•	 A list of events and parameters given to instruments in the orchestra 

•	 Provide a space-separated list of at least three values on each line: 

i instrumentNumber startTime duration p4 p5 ... 

i instrumentNumber startTime  duration p4 p5 ...

i instrumentNumber startTime duration p4 p5 ...


•	 Additional parameters (called p-fields) can be added after duration and provided to the instrument 
in the score 

•	 Example: Two events for instrument 23 lasting two seconds, starting at 0 and 5 seconds 

i 23 0.0 2.0

i 23 5.0 2.0


21.8. Csound: Rendering an Audio File 

•	 Call the CSD file with the csound command-line application on the CSD file to render audio 

csound -d -A noise.csd -o out.aif


•	 Provide a “flag” to indicate type of audio output 

•	 -A (aiff output) 

•	 -W (wave output) 

•	 Give sampling rate, control rate, and number of channels in a header 

sr = 44100

kr = 4410

ksmps = 10

nchnls = 2


•	 Example: a noise instrument 

•	 Example: tutorial-a-01.csd 
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<CsoundSynthesizer>

<CsInstruments> 

sr = 44100 

ksmps = 10

nchnls = 2


instr 100

 aNoise random -12000, 12000


 outs aNoise, aNoise

endin 


</CsInstruments>

<CsScore> 

i 100 0 2 

i 100 3 2 

i 100 6 2 

</CsScore>

</CsoundSynthesizer> 


21.9. Csound: GEN Routines and Wave Tables 

• Some opcodes require a wave table identification number as an argument 

• Wave tables are created with GEN routines in the score file, before events are listed 

• Example: a GEN routine used to create a 16384 point sine wave as a wave table 

f 99 0 16384 10 1 


• Oscillators require a wave table to provide a shape to oscillate 

The oscili opcode oscillates (and interpolates) any shape given in the f-table argument 

aSrc oscili amplitude, frequency, functionTable


• Example: two instruments, a noise and a sine instrument 

• Example: tutorial-a-02.csd 

<CsoundSynthesizer>

<CsInstruments> 

sr = 44100 

ksmps = 10

nchnls = 2


instr 100

 aNoise random -12000, 12000


 outs aNoise, aNoise

endin 


instr 101

 aSine oscili 12000, 800, 99


 outs aSine, aSine

endin 


</CsInstruments>

<CsScore> 

f 99 0 16384 10 1 


487 



  
  

  

   

      
  

 
 

      

   
  
  

   

i 100 0 2 

i 100 3 2 

i 100 6 2 


i 101 2 6 

</CsScore>

</CsoundSynthesizer> 


21.10. Csound: Scaling and Shifting Signals 

•	 Example: using a scaled sine wave as an envelope of noise 

•	 Assignment (=) and operators (+, *) permit mixing and scaling signals 

•	 Example: tutorial-a-03.csd 

<CsoundSynthesizer>

<CsInstruments> 

sr = 44100 

ksmps = 10

nchnls = 2


instr 102


 aEnvl oscili .5, 6.85, 99

aEnvl = aEnvl + .5


aNoise random -12000, 12000

 aNoise = aNoise * aEnvl


 outs aNoise, aNoise

endin 

</CsInstruments>

<CsScore> 

f 99 0 16384 10 1 

i 102 0 2 

i 102 3 2 

</CsScore>

</CsoundSynthesizer> 


21.11. Csound: Adding Parameters to Score and Orchestra 

•	 pN (p1, p2, p3, p4, ...) variables in orchestra permit additional parameter values to be provided 
from the score to the instrument 

•	 Design of instruments in the orchestra requires choosing what parameters are exposed in the 
score 

•	 Example: tutorial-a-04.csd 

<CsoundSynthesizer>

<CsInstruments> 

sr = 44100 

ksmps = 10

nchnls = 2
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instr 102


 iDur = p3

iTrem = p4


 aEnvl oscili .5, iTrem, 99

 aEnvl = aEnvl + .5


 aNoise random -12000, 12000

 aNoise = aNoise * aEnvl


 outs aNoise, aNoise

endin 

</CsInstruments>

<CsScore> 

f 99 0 16384 10 1 

i 102 0 2 6.2 ; fourth parameter is frequency of sine envelope

i 102 3 2 23 

i 102 6 2 45.6

</CsScore>

</CsoundSynthesizer> 


21.12. Csound: Adding Filters 

•	 Numerous opcodes exist to explore a wide range of common synthesis tools 

•	 Low pass filter 

aDst lowpass2 aSrc, cutoffFrequency, resonance


•	 Can create a control signal to adjust a lowpass filter cutoff frequency, and applying that lowpass 
filter to noise 

•	 Example: tutorial-a-05.csd 

<CsoundSynthesizer>

<CsInstruments> 

sr = 44100 

ksmps = 10

nchnls = 2


instr 102

 iDur = p3


   iTrem = p4

iFilterRate = p5


 aEnvl oscili .5, iTrem, 99

 aEnvl = aEnvl + .5


 aNoise random -12000, 12000

aNoise = aNoise * aEnvl


 kCutoff oscili .5, iFilterRate, 99

 kCutoff = kCutoff + .5

 kCutoff = kCutoff * 8000 + 900


 aPost lowpass2 aNoise, kCutoff, .85 

outs aPost, aPost


endin 

</CsInstruments>

<CsScore> 
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f 99 0 16384 10 1 

i 102 0 2 6.2 .85

i 102 3 2 23 .65

i 102 6 2 45.6 .50

</CsScore>

</CsoundSynthesizer> 


21.13. Csound: A Classic Synthesizer 

•	 A class subtractive synth sound with detuned oscillators, an LPF with modulated cutoff, and an 
ADSR envelope 

•	 Voltage controlled oscillator (vco): anlogue modelled digital oscillator 

aOsc vco amp, cps, waveShape, pulseWidth, functionTable


•	 ADSR envelope 

kEnvel adsr attack, decay, sustainLevel, release


•	 Example: tutorial-a-06.csd 

<CsoundSynthesizer>

<CsInstruments> 

sr = 44100 

ksmps = 10

nchnls = 2


instr 103


 iDur = p3

iAmp = ampdbfs(p4)

iPitch = cpsmidinn(p5)

iFilterRate = p6


 kCutoff oscili .5, iFilterRate, 99

 kCutoff = kCutoff + .5

 kCutoff = kCutoff * 4000 + 400


 aOscA vco iAmp, iPitch, 2, .5, 99

aOscB vco iAmp, iPitch*.499, 1, .5, 99


 aPost lowpass2 aOscA+aOscB, kCutoff, 1.2

 kEnvl adsr .1*iDur, .2*iDur, .8, .2*iDur


 outs aPost*kEnvl, aPost*kEnvl

endin 

</CsInstruments>

<CsScore> 

f 99 0 16384 10 1 

i 103 0 2 -12  52 .5

i 103 3 2 -18  51 1.2

i 103 6 4 -24  48 3

</CsScore>

</CsoundSynthesizer> 
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21.14. Granular Synthesis: History 

• Isaac Beekman (1588-1637): 1616: corpuscular theory of sound: sound cuts air 

• 1947: Gabor proposes acoustical quanta: like photons for sound (1947) 

© Nature Publishing Group. All rights reserved.

This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse.


• 1960: Xenakis expands theory of screens and grains for creative sound production (Xenakis 1992) 

• 1978: Curtis Roads introduces software for Granular Synthesis (Roads 1978, 1996, p. 168, 2002) 

21.15. Granular Synthesis: Concepts 

• Produce a stream of sounds with very short envelopes (10 to 200 ms) 

• Envelopes function like windows; multiple windows are often overlapped 

• Sounds may be derived from synthesized or sampled sources 

• Parameters are frequently randomly adjusted (spacing, amplitude, duration) 
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• Multiple streams are often combined combined 

• Extreme control and speed suggests a procedure idiomatic to computer-based synthesis 

21.16. Granular Synthesis: Pitch Shifting and Time Stretching 

• The Eltro Information Rate Changer (1967) 
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© source unknown. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.
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(c) Serendip LLC. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.

•	 Four playback heads 90 degrees apart on a cylinder; when spun can make continuous contact with 
the tape 

•	 By changing the direction and speed of the tape head rotation, could re-sample small bits of audio 
at a different speed without changing playback speed 

•	 By changing the tape speed and the tape head rotation speed, could alter tempo without altering 
pitch 

•	 Granular pitch/time shifting reads overlapping segments of an audio buffer, where each segment 
start position is consistent with the source playback speed, yet the reading of that segment can 
happen at a variable rate [demo/granularBasic.pd] 
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21.17. Grains in Csound 

•	 Numerous highly-specialized, advanced opcodes are available in Csound and other synthesis 
languages 

•	 “grain,” “granule,” (and more) for granular synthesis 

•	 An instrument that smoothly moves from min to maximum density, granulating an audio file 
loaded into a wave-table 

•	 Example: tutorial-a-07.csd 

<CsoundSynthesizer>

<CsInstruments> 

sr = 44100 

ksmps = 10

nchnls = 2


instr 104

 iDur = p3


   iDensityMin = p4

iDensityMax = p5


 iSnd = 98

 iBaseFq = 44100 / ftlen(iSnd)


 kDensity line iDensityMin, iDur, iDensityMax

kGrainDur line .010, iDur, .030
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 kAmpDev line 0, iDur, 1000


 aSrc grain 16000, iBaseFq, kDensity, kAmpDev, 0, kGrainDur, iSnd, 99, .100

 outs aSrc, aSrc


endin 

</CsInstruments>

<CsScore> 

f 99 0 16384 20 1 

f 98 0 1048576 1 “sax.aif” 0 0 0


i 104 0.0 10 .05 20

i 104 11.0 10 35 200

</CsScore>

</CsoundSynthesizer> 


21.18. Listening: Curtis Roads 

• Composer, computer musician, writer 

• Significant early work with granular techniques 

• Curtis Roads: “Now”: Line Point Cloud 

21.19. Listening: Trevor Wishart 

• Sound mutations and transformations 

• Interest in vocal sounds and new notations (Wishart 1996) 

• Trevor Wishart, Red Bird, 1977 

21.20. More Synthesis with Code 

• A variety of low-level frameworks for DSP in C and C++: STK, openAL 

• Numerous high-level languages related to Csound, often built in C/C++ 
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• Text-based: SuperCollider, ChucK, Nyquist, Cmix, Cmusic 

• Graphic-based: PD/MaxMsp, Open Sound World, Reaktor 

21.21. The Problem of Text 

• Systems like Csound are powerful, but may make exploration and experimentation difficult 

• Batch processing did not permit real-time, interactive systems 

• Signal graph (or signal network or patching) can be spread across multiple lines of text 

21.22. Signal Processing Block Diagrams 

• Used in audio engineering 

• Used to plan voltage-controlled synthesis systems before execution 

• Used to illustrate unit generators and types of inputs and output in Music N languages 

• Examples: 
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21.23. MaxMSP/PD 

•	 Max is a visual programming paradigm 

•	 Many diverse implementations: MaxMSP, jMax, Pd 

•	 Emphasizes real-time control and signal flow design 

•	 Emphasizes processes more than data 

21.24. MaxMSP/PD: History 

•	 1979-1987: Miller Puckette studied with Barry Vercoe 

•	 1982: Puckette releases Music 500 

•	 1985: Working on a dedicated digital audio processor, Puckette designs a new system, keeping the 
Music 500 control structure; names it Max after Max Mathews’s RTSKED (Puckette 1985) 

•	 1987: Re-rewrites Max in C for Macintosh (Puckette 1988) 

•	 Max commercialized by David Zicarelli, fell through two companies, than reconsolidated at 
Cycling 74 
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•	 Puckette reprograms Max for IRCAM ISPW and NeXT Cube, and adds signal processing to Max 
(called Faster Than Sound (FTS)) 

•	 1991: Max/FTS ported to other architectures 

•	 IRCAM version becomes jMax 

•	 Puckette reprograms system as Pure Data (PD), releases in 1997 as an open-source tool (Puckette 
1997) 

•	 Zicarelli, after PD’s signal processing, creates Max Signal Processing (MSP) (Puckette 2002) 

•	 PD-Extended offers a complete package of PD tools for all platforms 

http://puredata.info/downloads 

21.25. SuperCollider: History 

•	 Programming language and development environment for real-time signal processing 

•	 First released in 1996 by James McCartney (McCartney 1996; McCartney 1998) 

•	 1999: version 2 released (Wells 1999) 

•	 In 2002 version 3 released as an open source project 

21.26. SuperCollider: Concepts 

•	 Unit Generators are combined to produce SynthDefs 

•	 A server-based architecture: SynthDefs live on a server and send and receive messages and signals 

•	 A complete object-oriented language: create objects, manipulate, and reuse code 

•	 Designed for real-time performance and experimentation 

•	 Code can be executed piece by piece in the development environment 

•	 Under active development and supported by a robust community 

http://supercollider.sf.net 

21.27. SuperCollider: Basic Patching 

•	 Can evaluate code interactively by selecting expressions and pressing Enter (not Return!) 
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•	 Creating noise 

{WhiteNoise.ar(0.2)}.play


•	 Enveloping noise with a sine envelope scaled 

{WhiteNoise.ar(0.2) * SinOsc.kr(4, mul:0.5, add:0.5)}.play


•	 Oscillating rate of envelope applied to noise 

{

var envRate;

envRate = SinOsc.kr(0.3, mul:20, add:1.5);

WhiteNoise.ar(0.2) * SinOsc.kr(envRate, mul:0.5, add:0.5);

}.play


•	 Applying a low-pass filter 

{

var envRate, preFilter;

envRate = SinOsc.kr(0.3, mul:20, add:1.5);

preFilter = WhiteNoise.ar(0.2) * SinOsc.kr(envRate, mul:0.5, add:0.5);

LPF.ar(preFilter, 900);

}.play


•	 Applying a low-pass filter with a cutoff frequency controlled by an oscillator; translating MIDI 
values to Hertz 

{

var envRate, preFilter, cfControl;

envRate = SinOsc.kr(0.3, mul:20, add:1.5);

cfControl = SinOsc.kr(0.25, mul:0.5, add:0.5);

cfControl = (cfControl * 70) + 50;

preFilter = WhiteNoise.ar(0.2) * SinOsc.kr(envRate, mul:0.5, add:0.5);

LPF.ar(preFilter, cfControl.midicps);

}.play


21.28. SuperCollider: Creating SynthDefs and Sending Parameters 

•	 Most often, SynthDefs are created and sent signals or parameters from other processes 

•	 Create a SynthDef; create an envelope opened and closed by a gate; create LPF filtered noise; 
control the amplitude of the noise by the envelope; create a Task to loop through parameters for 
duration, sustain, and cutoff frequency scalar 

•	 Example: tutorial-b.rtf 

(

SynthDef(\noise, {|sus=2, ampMax=0.9, lpfCfScalar=20|


var env, amp, gate, sigPrePan, cfControl;


 gate = Line.ar(1, 0, sus, doneAction: 2);

env = Env.adsr(0.1*sus, 0.2*sus, 0.8, 0.1*sus, ampMax);

amp = EnvGen.kr(env, gate);


 cfControl = SinOsc.kr(12, mul:0.5, add:0.5);
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 cfControl = (cfControl * lpfCfScalar) + 40; 


sigPrePan = LPF.ar(WhiteNoise.ar(amp), cfControl.midicps);

Out.ar(0, Pan2.ar(sigPrePan, 0.5));


}).send(s);


r = Task({

var dur, sus, fq, delta;

dur = Pseq([0.5, 0.5, 0.25], 6).asStream;

sus = Pseq([0.2, 0.2, 0.2], 6).asStream;

fq = Pseq([60, 30, 20, 40], 6).asStream; // midi pitch values


 while {delta = dur.next;

delta.notNil


 } {

                Synth(\noise, [sus: sus.next, lpfCfScalar: fq.next]);


delta.yield;

}


});

r.play()

)


• Adding randomized panning control and cutoff frequency scalar 

• Example: tutorial-c.rtf 

(

SynthDef(\noise, {|sus=2, ampMax=0.9, lpfCfScalar=20, pan=0.5|


var env, amp, gate, sigPrePan, cfControl;


 gate = Line.ar(1, 0, sus, doneAction: 2);

env = Env.adsr(0.1*sus, 0.2*sus, 0.8, 0.1*sus, ampMax);

amp = EnvGen.kr(env, gate);


   cfControl = SinOsc.kr(12, mul:0.5, add:0.5);

cfControl = (cfControl * lpfCfScalar) + 40; 


sigPrePan = LPF.ar(WhiteNoise.ar(amp), cfControl.midicps);

Out.ar(0, Pan2.ar(sigPrePan, pan));


}).send(s);


r = Task({

var dur, sus, fq, delta, pan;

dur = Pseq([0.5, 0.5, 0.25], 6).asStream;

sus = Pseq([0.2, 0.2, 0.2], 6).asStream;

fq = Pshuf([60, 30, 20, 40], 6).asStream; // midi pitch values

pan = Pshuf([0, 0.2, 0.4, 0.6, 0.8, 1], 6).asStream;


        while {delta = dur.next;

delta.notNil


 } {

                Synth(\noise, [sus: sus.next, lpfCfScalar: fq.next, pan: pan.next]);


delta.yield;

}


});

r.play()

)


21.29. Live Coding 

• A performance practice of computer music that emphasizes the creation of code 
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•	 Computer screens are projected while code is used to build-up musical parts 

•	 Software such as SuperCollider, Impromptu, and ChucK are used 

•	 Live Coding with aa-cell 

YouTube (http://www.youtube.com/watch?v=OBt4PLUv2q0) 
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