
Chapter 21. Meeting 21, Languages: Synthesis with Code

21.1. Announcements

• Music Technology Case Study Final due Today, 24 November

• Sonic System Project Report due Thursday, 3 December

• Last quiz: Thursday, 3 December

21.2. Quiz Review

• ?

21.3. Modern Music-N

• 1985: Csound

• Command-line program

• Currently available for many platforms, with many interfaces

• http://www.csounds.com

21.4. Csound: Score, Orchestra, and CSD Files

• Orchestra (a .orc file) defines synthesis processing and interconnections (instruments)

• Score (a .sco file) defines control information (events and parameters)

• A CSD file combines the score and orchestra into a single file delimited by XML-style markup

• Outermost: <CsoundSynthesizer> </CsoundSynthesizer>

• Orchestra: <CsInstruments> </CsInstruments>

• Score: <CsScore> </CsScore>

21.5. Csound: Orchestra Syntax: Instrument Blocks

• A quasi programming language, closer in way to an assembly language

484

Orchestra procedures can be extended with Python (Ariza 2008)

•	 Consists of statements, functions, and opcodes

•	 Opcodes are unit generators

•	 Comments: start with a semicolon

•	 Instruments in blocks, named with a number:

•	 Start marker: “instr” and a number

•	 End marker: “endin”

•	 Trivial example instrument definition

instr 100

 ; comments here!

endin

21.6. Csound: Orchestra Syntax: Signals

•	 Signals are created and interconnected (patched) within instrument blocks

•	 Signals: cary streams of amplitude values as numbers within the dynamic range (16 bit audio uses
integers from -32768 to 32768)

•	 Signal paths (like patch cords) are named variables

•	 Signal variables can be at different rate resolutions depending on the first letter of the variable
name

•	 a-rate: Audio, name starts with an “a” (e.g. aNoise)

•	 k-rate: Control signals, name starts with an “k” (e.g. kEnvl)

•	 i-rate: Initialization values, name starts with an “i” (e.g. iFq)

•	 Example

aNoise random -12000, 12000

•	 Opcodes: unit generators

•	 Syntax uses spaces and commas to delineate:

Provide variable, opcode, and space-separated parameter arguments

destinationSignal opcodeName arg1, arg2, ...

485

•	 Example: “random”; takes two arguments: min and max

•	 Example: “outs”: takes two arguments: two signals

•	 Example

instr 100

 aNoise random -12000, 12000

 outs aNoise, aNoise

endin

21.7. Csound: Score Syntax

•	 A list of events and parameters given to instruments in the orchestra

•	 Provide a space-separated list of at least three values on each line:

i instrumentNumber startTime duration p4 p5 ...

i instrumentNumber startTime duration p4 p5 ...

i instrumentNumber startTime duration p4 p5 ...

•	 Additional parameters (called p-fields) can be added after duration and provided to the instrument
in the score

•	 Example: Two events for instrument 23 lasting two seconds, starting at 0 and 5 seconds

i 23 0.0 2.0

i 23 5.0 2.0

21.8. Csound: Rendering an Audio File

•	 Call the CSD file with the csound command-line application on the CSD file to render audio

csound -d -A noise.csd -o out.aif

•	 Provide a “flag” to indicate type of audio output

•	 -A (aiff output)

•	 -W (wave output)

•	 Give sampling rate, control rate, and number of channels in a header

sr = 44100

kr = 4410

ksmps = 10

nchnls = 2

•	 Example: a noise instrument

•	 Example: tutorial-a-01.csd

486

<CsoundSynthesizer>

<CsInstruments>

sr = 44100

ksmps = 10

nchnls = 2

instr 100

 aNoise random -12000, 12000

 outs aNoise, aNoise

endin

</CsInstruments>

<CsScore>

i 100 0 2

i 100 3 2

i 100 6 2

</CsScore>

</CsoundSynthesizer>

21.9. Csound: GEN Routines and Wave Tables

• Some opcodes require a wave table identification number as an argument

• Wave tables are created with GEN routines in the score file, before events are listed

• Example: a GEN routine used to create a 16384 point sine wave as a wave table

f 99 0 16384 10 1

• Oscillators require a wave table to provide a shape to oscillate

The oscili opcode oscillates (and interpolates) any shape given in the f-table argument

aSrc oscili amplitude, frequency, functionTable

• Example: two instruments, a noise and a sine instrument

• Example: tutorial-a-02.csd

<CsoundSynthesizer>

<CsInstruments>

sr = 44100

ksmps = 10

nchnls = 2

instr 100

 aNoise random -12000, 12000

 outs aNoise, aNoise

endin

instr 101

 aSine oscili 12000, 800, 99

 outs aSine, aSine

endin

</CsInstruments>

<CsScore>

f 99 0 16384 10 1

487

i 100 0 2

i 100 3 2

i 100 6 2

i 101 2 6

</CsScore>

</CsoundSynthesizer>

21.10. Csound: Scaling and Shifting Signals

•	 Example: using a scaled sine wave as an envelope of noise

•	 Assignment (=) and operators (+, *) permit mixing and scaling signals

•	 Example: tutorial-a-03.csd

<CsoundSynthesizer>

<CsInstruments>

sr = 44100

ksmps = 10

nchnls = 2

instr 102

 aEnvl oscili .5, 6.85, 99

aEnvl = aEnvl + .5

aNoise random -12000, 12000

 aNoise = aNoise * aEnvl

 outs aNoise, aNoise

endin

</CsInstruments>

<CsScore>

f 99 0 16384 10 1

i 102 0 2

i 102 3 2

</CsScore>

</CsoundSynthesizer>

21.11. Csound: Adding Parameters to Score and Orchestra

•	 pN (p1, p2, p3, p4, ...) variables in orchestra permit additional parameter values to be provided
from the score to the instrument

•	 Design of instruments in the orchestra requires choosing what parameters are exposed in the
score

•	 Example: tutorial-a-04.csd

<CsoundSynthesizer>

<CsInstruments>

sr = 44100

ksmps = 10

nchnls = 2

488

instr 102

 iDur = p3

iTrem = p4

 aEnvl oscili .5, iTrem, 99

 aEnvl = aEnvl + .5

 aNoise random -12000, 12000

 aNoise = aNoise * aEnvl

 outs aNoise, aNoise

endin

</CsInstruments>

<CsScore>

f 99 0 16384 10 1

i 102 0 2 6.2 ; fourth parameter is frequency of sine envelope

i 102 3 2 23

i 102 6 2 45.6

</CsScore>

</CsoundSynthesizer>

21.12. Csound: Adding Filters

•	 Numerous opcodes exist to explore a wide range of common synthesis tools

•	 Low pass filter

aDst lowpass2 aSrc, cutoffFrequency, resonance

•	 Can create a control signal to adjust a lowpass filter cutoff frequency, and applying that lowpass
filter to noise

•	 Example: tutorial-a-05.csd

<CsoundSynthesizer>

<CsInstruments>

sr = 44100

ksmps = 10

nchnls = 2

instr 102

 iDur = p3

 iTrem = p4

iFilterRate = p5

 aEnvl oscili .5, iTrem, 99

 aEnvl = aEnvl + .5

 aNoise random -12000, 12000

aNoise = aNoise * aEnvl

 kCutoff oscili .5, iFilterRate, 99

 kCutoff = kCutoff + .5

 kCutoff = kCutoff * 8000 + 900

 aPost lowpass2 aNoise, kCutoff, .85

outs aPost, aPost

endin

</CsInstruments>

<CsScore>

489

f 99 0 16384 10 1

i 102 0 2 6.2 .85

i 102 3 2 23 .65

i 102 6 2 45.6 .50

</CsScore>

</CsoundSynthesizer>

21.13. Csound: A Classic Synthesizer

•	 A class subtractive synth sound with detuned oscillators, an LPF with modulated cutoff, and an
ADSR envelope

•	 Voltage controlled oscillator (vco): anlogue modelled digital oscillator

aOsc vco amp, cps, waveShape, pulseWidth, functionTable

•	 ADSR envelope

kEnvel adsr attack, decay, sustainLevel, release

•	 Example: tutorial-a-06.csd

<CsoundSynthesizer>

<CsInstruments>

sr = 44100

ksmps = 10

nchnls = 2

instr 103

 iDur = p3

iAmp = ampdbfs(p4)

iPitch = cpsmidinn(p5)

iFilterRate = p6

 kCutoff oscili .5, iFilterRate, 99

 kCutoff = kCutoff + .5

 kCutoff = kCutoff * 4000 + 400

 aOscA vco iAmp, iPitch, 2, .5, 99

aOscB vco iAmp, iPitch*.499, 1, .5, 99

 aPost lowpass2 aOscA+aOscB, kCutoff, 1.2

 kEnvl adsr .1*iDur, .2*iDur, .8, .2*iDur

 outs aPost*kEnvl, aPost*kEnvl

endin

</CsInstruments>

<CsScore>

f 99 0 16384 10 1

i 103 0 2 -12 52 .5

i 103 3 2 -18 51 1.2

i 103 6 4 -24 48 3

</CsScore>

</CsoundSynthesizer>

490

21.14. Granular Synthesis: History

• Isaac Beekman (1588-1637): 1616: corpuscular theory of sound: sound cuts air

• 1947: Gabor proposes acoustical quanta: like photons for sound (1947)

© Nature Publishing Group. All rights reserved.

This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse.

• 1960: Xenakis expands theory of screens and grains for creative sound production (Xenakis 1992)

• 1978: Curtis Roads introduces software for Granular Synthesis (Roads 1978, 1996, p. 168, 2002)

21.15. Granular Synthesis: Concepts

• Produce a stream of sounds with very short envelopes (10 to 200 ms)

• Envelopes function like windows; multiple windows are often overlapped

• Sounds may be derived from synthesized or sampled sources

• Parameters are frequently randomly adjusted (spacing, amplitude, duration)

491

http://ocw.mit.edu/fairuse

• Multiple streams are often combined combined

• Extreme control and speed suggests a procedure idiomatic to computer-based synthesis

21.16. Granular Synthesis: Pitch Shifting and Time Stretching

• The Eltro Information Rate Changer (1967)

492

© source unknown. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

(c) Serendip LLC. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.

•	 Four playback heads 90 degrees apart on a cylinder; when spun can make continuous contact with
the tape

•	 By changing the direction and speed of the tape head rotation, could re-sample small bits of audio
at a different speed without changing playback speed

•	 By changing the tape speed and the tape head rotation speed, could alter tempo without altering
pitch

•	 Granular pitch/time shifting reads overlapping segments of an audio buffer, where each segment
start position is consistent with the source playback speed, yet the reading of that segment can
happen at a variable rate [demo/granularBasic.pd]

493

http://ocw.mit.edu/fairuse

21.17. Grains in Csound

•	 Numerous highly-specialized, advanced opcodes are available in Csound and other synthesis
languages

•	 “grain,” “granule,” (and more) for granular synthesis

•	 An instrument that smoothly moves from min to maximum density, granulating an audio file
loaded into a wave-table

•	 Example: tutorial-a-07.csd

<CsoundSynthesizer>

<CsInstruments>

sr = 44100

ksmps = 10

nchnls = 2

instr 104

 iDur = p3

 iDensityMin = p4

iDensityMax = p5

 iSnd = 98

 iBaseFq = 44100 / ftlen(iSnd)

 kDensity line iDensityMin, iDur, iDensityMax

kGrainDur line .010, iDur, .030

494

 kAmpDev line 0, iDur, 1000

 aSrc grain 16000, iBaseFq, kDensity, kAmpDev, 0, kGrainDur, iSnd, 99, .100

 outs aSrc, aSrc

endin

</CsInstruments>

<CsScore>

f 99 0 16384 20 1

f 98 0 1048576 1 “sax.aif” 0 0 0

i 104 0.0 10 .05 20

i 104 11.0 10 35 200

</CsScore>

</CsoundSynthesizer>

21.18. Listening: Curtis Roads

• Composer, computer musician, writer

• Significant early work with granular techniques

• Curtis Roads: “Now”: Line Point Cloud

21.19. Listening: Trevor Wishart

• Sound mutations and transformations

• Interest in vocal sounds and new notations (Wishart 1996)

• Trevor Wishart, Red Bird, 1977

21.20. More Synthesis with Code

• A variety of low-level frameworks for DSP in C and C++: STK, openAL

• Numerous high-level languages related to Csound, often built in C/C++

495

• Text-based: SuperCollider, ChucK, Nyquist, Cmix, Cmusic

• Graphic-based: PD/MaxMsp, Open Sound World, Reaktor

21.21. The Problem of Text

• Systems like Csound are powerful, but may make exploration and experimentation difficult

• Batch processing did not permit real-time, interactive systems

• Signal graph (or signal network or patching) can be spread across multiple lines of text

21.22. Signal Processing Block Diagrams

• Used in audio engineering

• Used to plan voltage-controlled synthesis systems before execution

• Used to illustrate unit generators and types of inputs and output in Music N languages

• Examples:

496

21.23. MaxMSP/PD

•	 Max is a visual programming paradigm

•	 Many diverse implementations: MaxMSP, jMax, Pd

•	 Emphasizes real-time control and signal flow design

•	 Emphasizes processes more than data

21.24. MaxMSP/PD: History

•	 1979-1987: Miller Puckette studied with Barry Vercoe

•	 1982: Puckette releases Music 500

•	 1985: Working on a dedicated digital audio processor, Puckette designs a new system, keeping the
Music 500 control structure; names it Max after Max Mathews’s RTSKED (Puckette 1985)

•	 1987: Re-rewrites Max in C for Macintosh (Puckette 1988)

•	 Max commercialized by David Zicarelli, fell through two companies, than reconsolidated at
Cycling 74

497

•	 Puckette reprograms Max for IRCAM ISPW and NeXT Cube, and adds signal processing to Max
(called Faster Than Sound (FTS))

•	 1991: Max/FTS ported to other architectures

•	 IRCAM version becomes jMax

•	 Puckette reprograms system as Pure Data (PD), releases in 1997 as an open-source tool (Puckette
1997)

•	 Zicarelli, after PD’s signal processing, creates Max Signal Processing (MSP) (Puckette 2002)

•	 PD-Extended offers a complete package of PD tools for all platforms

http://puredata.info/downloads

21.25. SuperCollider: History

•	 Programming language and development environment for real-time signal processing

•	 First released in 1996 by James McCartney (McCartney 1996; McCartney 1998)

•	 1999: version 2 released (Wells 1999)

•	 In 2002 version 3 released as an open source project

21.26. SuperCollider: Concepts

•	 Unit Generators are combined to produce SynthDefs

•	 A server-based architecture: SynthDefs live on a server and send and receive messages and signals

•	 A complete object-oriented language: create objects, manipulate, and reuse code

•	 Designed for real-time performance and experimentation

•	 Code can be executed piece by piece in the development environment

•	 Under active development and supported by a robust community

http://supercollider.sf.net

21.27. SuperCollider: Basic Patching

•	 Can evaluate code interactively by selecting expressions and pressing Enter (not Return!)

498

•	 Creating noise

{WhiteNoise.ar(0.2)}.play

•	 Enveloping noise with a sine envelope scaled

{WhiteNoise.ar(0.2) * SinOsc.kr(4, mul:0.5, add:0.5)}.play

•	 Oscillating rate of envelope applied to noise

{

var envRate;

envRate = SinOsc.kr(0.3, mul:20, add:1.5);

WhiteNoise.ar(0.2) * SinOsc.kr(envRate, mul:0.5, add:0.5);

}.play

•	 Applying a low-pass filter

{

var envRate, preFilter;

envRate = SinOsc.kr(0.3, mul:20, add:1.5);

preFilter = WhiteNoise.ar(0.2) * SinOsc.kr(envRate, mul:0.5, add:0.5);

LPF.ar(preFilter, 900);

}.play

•	 Applying a low-pass filter with a cutoff frequency controlled by an oscillator; translating MIDI
values to Hertz

{

var envRate, preFilter, cfControl;

envRate = SinOsc.kr(0.3, mul:20, add:1.5);

cfControl = SinOsc.kr(0.25, mul:0.5, add:0.5);

cfControl = (cfControl * 70) + 50;

preFilter = WhiteNoise.ar(0.2) * SinOsc.kr(envRate, mul:0.5, add:0.5);

LPF.ar(preFilter, cfControl.midicps);

}.play

21.28. SuperCollider: Creating SynthDefs and Sending Parameters

•	 Most often, SynthDefs are created and sent signals or parameters from other processes

•	 Create a SynthDef; create an envelope opened and closed by a gate; create LPF filtered noise;
control the amplitude of the noise by the envelope; create a Task to loop through parameters for
duration, sustain, and cutoff frequency scalar

•	 Example: tutorial-b.rtf

(

SynthDef(\noise, {|sus=2, ampMax=0.9, lpfCfScalar=20|

var env, amp, gate, sigPrePan, cfControl;

 gate = Line.ar(1, 0, sus, doneAction: 2);

env = Env.adsr(0.1*sus, 0.2*sus, 0.8, 0.1*sus, ampMax);

amp = EnvGen.kr(env, gate);

 cfControl = SinOsc.kr(12, mul:0.5, add:0.5);

499

 cfControl = (cfControl * lpfCfScalar) + 40;

sigPrePan = LPF.ar(WhiteNoise.ar(amp), cfControl.midicps);

Out.ar(0, Pan2.ar(sigPrePan, 0.5));

}).send(s);

r = Task({

var dur, sus, fq, delta;

dur = Pseq([0.5, 0.5, 0.25], 6).asStream;

sus = Pseq([0.2, 0.2, 0.2], 6).asStream;

fq = Pseq([60, 30, 20, 40], 6).asStream; // midi pitch values

 while {delta = dur.next;

delta.notNil

 } {

 Synth(\noise, [sus: sus.next, lpfCfScalar: fq.next]);

delta.yield;

}

});

r.play()

)

• Adding randomized panning control and cutoff frequency scalar

• Example: tutorial-c.rtf

(

SynthDef(\noise, {|sus=2, ampMax=0.9, lpfCfScalar=20, pan=0.5|

var env, amp, gate, sigPrePan, cfControl;

 gate = Line.ar(1, 0, sus, doneAction: 2);

env = Env.adsr(0.1*sus, 0.2*sus, 0.8, 0.1*sus, ampMax);

amp = EnvGen.kr(env, gate);

 cfControl = SinOsc.kr(12, mul:0.5, add:0.5);

cfControl = (cfControl * lpfCfScalar) + 40;

sigPrePan = LPF.ar(WhiteNoise.ar(amp), cfControl.midicps);

Out.ar(0, Pan2.ar(sigPrePan, pan));

}).send(s);

r = Task({

var dur, sus, fq, delta, pan;

dur = Pseq([0.5, 0.5, 0.25], 6).asStream;

sus = Pseq([0.2, 0.2, 0.2], 6).asStream;

fq = Pshuf([60, 30, 20, 40], 6).asStream; // midi pitch values

pan = Pshuf([0, 0.2, 0.4, 0.6, 0.8, 1], 6).asStream;

 while {delta = dur.next;

delta.notNil

 } {

 Synth(\noise, [sus: sus.next, lpfCfScalar: fq.next, pan: pan.next]);

delta.yield;

}

});

r.play()

)

21.29. Live Coding

• A performance practice of computer music that emphasizes the creation of code

500

•	 Computer screens are projected while code is used to build-up musical parts

•	 Software such as SuperCollider, Impromptu, and ChucK are used

•	 Live Coding with aa-cell

YouTube (http://www.youtube.com/watch?v=OBt4PLUv2q0)

501

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology (Contemporary History and Aesthetics)
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

