21m.380 · Music and Technology Recording Techniques & Audio Production

Stereo recording techniques

Session $9 \cdot$ Wednesday, October 5, 2016

1 Student presentations (PA1)

•

2 Review: Eqs

Exercise in attached handout:

- Given are the settings of a parametric EQ on a mixer
- What does the resulting frequency response look like?

3 What is stereo?

3.1 Loudspeaker stereophony

FIGURE 1. Standard stereo loud-speaker setup

- Standard stereo setup: Equilateral triangle between 2 loudspeakers and listener in *sweet spot*
- Tweeter of a nearfield monitor loudspeaker usually aligned with listener's ears (even if that means flipping the speaker upside down)
- Ear decodes *interchannel level* (ΔL) *and time differences* Δt (correspond loosely to *interaural differences*; cf., Mon, 9/19 lecture)

	Coincident	Mixed	Spaced	Binaural
Loudspeaker compatible?	✓	1	1	×
Mono compatibility	٢	٢	٢	۲
Spaciousness	۲	٢	٢	٢
Depth	٢	٢	٢	٢
Localization	٢	٢	٢	٢
Omnis an option?	×	×	✓	✓

3.2 Stereophonic recording techniques

TABLE 1. Families of stereophonicrecording techniques (cf., Schoeps2004)

4 families of stereophonic recording techniques, characterized by:

- Angle β and/or distance *d* between (usually 2) microphones
- Presence or absence of a solid body between the microphones

4 Coincident stereophony

- $\beta > 0, d = 0$: 2 angled mics in 'same' location (vertically stacked)
- Captures interchannel level (but not time) differences
- Mics *must* be directional (otherwise you just record same signal twice)
- Stereo width adjustment through panpot is possible O

4.1 XY

- 2 coincident (potentially hyper-/super-) cardioids pointing $\pm 45^{\circ}$
- Some engineers prefer wider microphone base angle $\beta > 90^{\circ}$

4.2 Blumlein pair

- 2 coincident fig-8s pointing $\pm 45^{\circ}$ (same as xy, except fig-8s)
- More reverbant sound than xy (due to pickup from rear)

4.3 Mid/side (M/S)

- 2 coincident mics:
 - Mid-channel M: Omni (or cardioid) facing source at o°
 - Side-channel S: Fig-8 pointing *sideways* (+90° or -90°)
- Mic signals M, S first need to be decoded to loudspeaker signals L, R!

$$L = \frac{M + \hat{\xi}}{2}$$
$$R = \frac{M - \hat{\xi}}{2}$$

FIGURE 2. XY stereo recording

Equation 1. M/S decoder

- Sign in decoding equations depends on ± orientation of fig-8!
 - $5 \dots$ positive fig-8 polarity left
 - \vec{S} ... positive fig-8 polarity right
- M/S allows post-recording adjustments of stereo image width ©
 - S signal effectively encodes *differences* between left and right
 - Higher ^S/M ratio gives wider stereo image
- Reaper demo:
 - 1. Insert Media file... M/s example recording from LMOD
 - 2. Add plugin to track: FX JS JS: Mid/Side Decoder
 - 3. Lower Center level (dB) to increase S/M ratio
- Reaper demo: Plugin-free DIY M/S decoder

5 Spaced stereophony

- $\beta = 0, d > 0$: 2 mics placed at some distance from each other
- Omnis are an option \bigcirc : d > 0 yields interchannel time differences Δt
- But $p \propto \frac{1}{r}$, so level differences ΔL are also captured (even with omnis)
- Hard L/R panning only (don't mix out-of-phase signals on panpot!)

5.1 AB

FIGURE 4. AB stereo recording

- 2 spaced omnis
- Distance *d* varies to taste (say, 20 cm to 300 cm)
- Danger of *hole in the center* for $d \gg \bigcirc$

5.2 Faulkner pair

• Two forward-pointing fig-8s at d = 20 cm

5.3 Decca tree

FIGURE 5. Two Decca trees of different dimensions (after Sengpiel 1994) \bigcirc

- Characteristic: Uses 3 mics, not 2
- 3 omnis in triangular configuration, with center mic brought forward
- *L* and *R* mics angled outwards (even though they are omnis!)
- Dimensions vary (cf., figure 5)

6 Mixed stereophony

- $\beta > 0, d > 0$: 2 angled *and* spaced directional mics
- · Captures interchannel level and time differences
- · Compromise between advantages of coincident and spaced techniques
- Hard L/R panning only (don't mix out-of-phase signals on panpot!)

6.1 Ortf

- 2 cardiods at $\beta = 110^{\circ}$ and d = 17 cm
- · Only mixed technique whose geometry you should remember

6.2 Other mixed stereophonic techniques

- Other dual-cardioid configurations exist (cf., table 2)
- Used by and named after different European broadcasting corporations
- No need to learn mixed geometries other than ORTF by heart

FIGURE 6. ORTF stereo recording

TABLE 2. Mixed stereophonic recording techniques (all using two cardioids)

Technique	$\beta/^{\circ}$	d/cm
Ortf	110	17
Nos	90	30
Eвs	90	25
Rai	100	21
Din	90	20
Olson	135	20

7 Aural comparison: XY, AB, ORTF, Decca tree

- Same performance recorded by XY, AB, ORTF & Decca tree
- Sound examples (unfortunately no longer online) by Danish Pro Audio
- Let's gather groups of 3 in the classroom's sweet spot

8 Binaural stereophony

- $\beta = 0, d > 0$: 2 mics (often omnis) separated by solid object
- Captures interchannel time, level, *and spectral* differences (due to reflections from solid object, which mimicks human head)
- Excellent (3D!) localization when played back on headphones
- Loudspeaker playback: undesirable filtering effects (doubled HRTF)
- Hard L/R panning only (don't mix out-of-phase signals on panpot!)

8.1 Dummy head

• 2 mics (often omnis) in ears of a fake human head

8.2 Schoeps кFM 6

- KFM ... Kugelflächenmikrofon (spherical surface microphone)
- 2 omnis embedded into surface of a solid sphere of d = 20 cm

8.3 Oss (Jecklin disk)

- Oss ... optimum stereo signal
- 2 omnis separated by sound-absorbing disk
- Invented by Jürg Jecklin (Swiss broadcasting engineer)
- Originally proposed dimensions later revised

9 Recording angle

Every stereo microphone (β , d) has an (invisible) recording angle α .

- $\alpha \neq \beta$ (not the same as visible microphone base angle!)
- Can be compared to utility angle of a torch (invisible if torch is off)

FIGURE 7. Schoeps KFM 6 geometry

FIGURE 8. Revised oss dimensions by Jürg Jecklin

FIGURE 9. Stereo recording

FIGURE 10. Stereo playback

9.1 Interpretation of the recording angle

Knowledge of α allows to predict how a real sound source at direction ϕ will translate to a *phantom source* from perceived direction θ :

- $|\phi| < \frac{\alpha}{2} \rightarrow |\theta| < \frac{60^{\circ}}{2}$ (within recording angle \rightarrow between loudspeakers)
- $|\phi| \ge \frac{\alpha}{2} \to \theta = \pm \frac{60^{\circ}}{2}$ (beyond recording angle \to from 1 speaker only)

9.2 Determining the recording angle

How to determine recording angle α of a given stereo configuration (β , d)?

- 1. Derive interchannel time difference Δt for real source at ϕ from
 - Geometry
 - Speed of sound c
- **2**. Derive interchannel level difference ΔL for real source at ϕ from
 - Geometry
 - Inverse distance law $p \propto \frac{1}{r}$
 - Microphone directivity $A = A_p + A_{\nabla p} \cdot \cos \phi$ (cf., Wed, 9/14 lecture)
- 3. Conduct listening tests to determine how combination of ΔL , Δt translates to perceived phantom source direction θ
- 4. Generalize to recording angle α as a function of microphone distance *d* and microphone base angle β (*Williams curves*; cf., Williams 1987)

References & further reading

- Eargle, John (2004). "Classical stereo recording techniques and practice." In: *The Microphone Book*. 2nd ed. Focal Press. Chap. 13, pp. 194–216. ISBN: 978-0240519616. MIT LIBRARY: 002015037.
- Hempton, Gordon and Ken Greenebaum (2004). "A brief introduction to binaural recording." In: *Audio Anecdotes: Tools, Tips, and Techniques for Digital Audio*. Ed. by Ken Greenebaum and Ronen Barzel. Vol. II. Natick, ма: A K Peters, pp. 23–6. MIT LIBRARY: 001285509.
- Paul, Stephan (2009). "Binaural recording technology. A historical review and possible future developments." In: Acta Acustica United With Acustica 95, pp. 767–88. DOI: 10.3813/AAA.918208. URL: https://www.researchgate.net/profile/Stephan_Paul3/publication/233582452_Binaural_Recording_Technology_A_Historical_Review_and_Possible_Future_Developments/links/02e7e53ad8eb06693f000000. pdf (visited on 12/17/2017).
- Schalltechnik Dr.-Ing. Schoeps GmbH (2004). Overview of Stereophonic Recording Techniques. URL: http://www.schoeps.de/documents/stereo-recording-techniques-e.pdf (visited on 10/19/2014).

- Sengpiel, Eberhard (1994). Decca Tree Recording mit Neumann-Druckempfängern M 50. URL: http://www.sengpielaudio.com/DeccaTreeRecordingM50. pdf (visited on 10/07/2013).
- Williams, Michael (Mar. 1987). "Unified theory of microphone systems for stereophonic sound recording." In: *Proceedings of the 82nd AES Convention*. Preprint 2466 (H-6). London. URL: http://www.mmad.info/ Collected%20Papers/Stereo/2466%20London%201997%20(41%20pages) .pdf (visited on 05/31/2017).

•	•			•								·						•					•											 	.	+15dB
	•									•																								 	•	+12dB
	•																																	 	•	+9dB
	•			•	•		•	•	•	•		•									•							•						 	•	+6dB
•	•		•	•	•	•	•	•	•	•	•	•			•		•	•		•	•		•			•		•						 	•	+3dB
	••••	 	 	••••				 			••••	 • • •	 		 ••••	 • • • •				•••		•••	•••	 • • •	 	•••	 ••••		 	 	 	 	 	 		0dB
	•			•	•				•	•	•				•		•	•								•		•						 	•	-3dB
•	•		•	•	•	•	•	•	•	•	•	•		•			•				•					•		•						 	•	-6dB
•	•			·	•		•	•	•			•							•		•							•						 	•	-9dB
	•																																	 	•	-12dB
	•																																	 	•	-15dB

21M.380 Music and Technology: Recording Techniques and Audio Production Fall 2016

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.