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Recording Techniques & Audio Production 

Perception of sound 

Session 4 · Monday, September 19, 2016 

1 Student presentation (pa1) 
• 

2 Announcements 

2.1 I want you for schlepping! 
• Volunteers needed for Wed, 9/21 class meeting

• 2–3 volunteers at room , 10 minutes before start of class 

• 2–3 volunteers after class (please approach me after class)

2.2 Preview qz1 

3 Physics vs. perception of sound 

3.1 Psychoacoustic relationships 

Physical property Perceptual effect 
Amplitude 
Fundamental frequency 
Spectral composition 
Sound source position 

Loudness 
Pitch 

Timbre 
Perceived direction 

Table 1. Some psychoacoustic rela-
tionships 

• Physics vs. perception of sound can differ radically!

• Field of psychoacoustics investigates relationships between them

• For example, we can hear sounds that are not physically present!

• Important to use correct terminology in each situation! For example:

– Amplitude & frequency refer to physical properties
– Loudness & pitch refer to perceptual phenomena

• Yes, amplitude affects loudness perception.

• Yes, frequency affects pitch perception.

• But relationships are interdependent and highly non-linear!
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3.2 Just noticeable difference (jnd) 
• Smallest change of a physical quantity that results in a perceptual effect

• Examples:

– Jnd for amplitude (≈ 1 dB)
– Jnd for frequency (depends on range)
– Jnd for source position (≈ 1° for front direction)

• Pigeon (2007–2014) provides various blind jnd listening tests online

4 Auditory scene analysis 

• Bregman (1990): Imagine you can tell number, sizes, and positions of
boats on a lake – from looking at resulting water ripples on the shore.

• Human ear continuously performs aural equivalent of this task!1 1 That’s what I call music technology! 

– But how does human ear make sense of ‘spectrogram mess’?
– Field of auditory scene analysis investigates underlying principles

• Application example №1: Music composition

– J. S. Bach – E major partita for solo violin (bwv 1006), prelude, mm.13–28
– Franz Liszt – Etude III: La Campanella

http://auditoryneuroscience.com/topics/la-campanella

• Application example №2: Music mixing

– First law of music mixing: Balance = coherence + transparency
– Coherence requires fusion, transparency requires segregation

4.1 Sequential grouping (stream segregation) 
• How can ear tell which sequential components belong to same stream?

• Determined by acoustic distance (Bregman and Woszczyk 2004, p. 40)

• Refers to separation of sounds in terms of:

– Frequency: http://auditoryneuroscience.com/topics/streaming-
alternating-tones

– Time (cf., Bregman and Ahad 1996, ex. 1)
– Fundamental frequency (cf., Bregman and Ahad 1996, ex. 6)
– Spectral shape
– Spatial direction (cf., Bregman and Ahad 1996, ex. 38)
– Center frequency (e.g., band-passed noise bursts)

• Weaker factors:

2 of 13 

http://auditoryneuroscience.com/topics/la-campanella
http://auditoryneuroscience.com/topics/streaming-alternating-tones
http://auditoryneuroscience.com/topics/streaming-alternating-tones


21m.380 · Perception of sound · Mon, 9/19/2016 

– Differences in intensity
– Differences in rise times
– Differences in noisiness

• Abruptness of changes also affects grouping

• Cumulative effect (stronger grouping as evidence grows over time)

4.2 Simultaneous grouping (spectral integration or fusion) 
• How can ear tell which concurrent components belong to same source?

• Determined by (non-linear) combination of multiple factors:

– Principle of harmonicity, e.g., fusion by common frequency change
(cf., Bregman and Ahad 1996, ex. 19)

– Onset and offset asynchrony (cf., Bregman and Ahad 1996, ex. 21,
http://auditoryneuroscience.com/topics/onsets-and-vowel-identity)

– Envelope independence
– Spatial separation
– Spectral separation

• More robust cues tend to be more dominant

4.3 Competition sequential vs. simultaneous grouping 

• Phenomenon of apparent continuity

– Interpreted in terms of a principle referred to as old-plus-new heuristic
– Cf., Bregman and Ahad (1996, exs. 28, 32, 36, 27)

• Combining information from many cues

5 Anatomy of the human ear 

5.1 Outer ear 

• Pinna (what we call ‘the ear’)

• Auditory canal

• Tympanic membrane (ear drum) at transition to middle ear

5.2 Middle ear 

• Filled with air (unless you have a cold)

• Eustachian tube for pressure equalization to outside world

• 3 ossicles (malleus, incus, stapes)

– Act as impedance transformer for fluid inside cochlea
– Analogy: Shouting at your diving friend from shore of lake

• Oval window at transition to inner ear
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5.3 Inner ear 

• Embedded in hardest bone of human body

• Filled with fluid

• Cochlea (‘curly thing’) contains basilar membrane

• Different frequencies excite different sections of basilar membrane

• Haircells (inner vs. outer) on membrane connected to auditory nerve

6 Limits of human hearing 

Upper range of hearing Lower range 1 kHz 𝐴 (dBSPL) (decreases with age at )of hearing 10 years 

Pain threshold 

infrasound ≈ 130 dB ultrasound 

Absolute threshold of hearing 
(increases with age) 

Figure 1. Amplitude and frequency 
limits of human hearing 

𝑓 
20 Hz 20 kHz 

6.1 Frequency 

• Rule of 👍: 20 Hz to 20 kHz (ca. 10 octaves)

• Upper range of hearing decreases by ca. 1 kHz per life decade

• Lower range of hearing: rhythm-pitch continuum

6.2 Amplitude 

• Lower limit: Absolute threshold of human hearing

– In absolute terms: 𝐼0 ≈ 1 × 10−12 W m−2 at 1 kHz
– Depends heavily on frequency (more later)
– Increases with age (but not as dramatic as for frequency)

• Upper limit: Pain threshold (𝐼𝑝𝑎𝑖𝑛 ≈ 10 W m−2 at 1 kHz)

• Exercise: What is the dynamic range of the human ear?
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7 Loudness perception 

• Perceived loudness is a subjective quality

• Depends on many factors other than physical sound pressure level

7.1 Factors that loudness perception depends on2

• Perceived loudness of short sounds increases with their duration
Sound design application: Stretching gunshots (< 200 ms)

• Perceived loudness for steady sounds decreases with exposure time

– Depends on absolute sound pressure level
– Short interruptions ‘reset’ loudness perception

• Loudness distinction depends on (Farnell 2010, p. 83):

– Frequency (minimum jnd for 1 kHz to 4 kHz)
– Sound pressure level (minimum jnd for 60 dBSPL to 70 dBSPL)

• Most significantly, perceived loudness depends on frequency

7.2 Equal-loudness contours 
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• Describe frequency dependence of loudness perception

• First measured by Fletcher and Munson (1933)

• Multiple revisions since; most recently by Iso (2003)

• Spl at 1 kHz defines phon as a measure of equal loudness

– Zero-phon curve … absolute threshold of human hearing

2 cf., Farnell 2010, pp. 81 ff. 

Figure 2. Equal-loudness contours 
(Iso 2003) 
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– 60 phon means [no more than] “as loud as a 1 kHz sine tone at 60 dB”
– But really only expresses equal loudness & only applies to sine tones

• Exercise: By how many dB does one need to increase sound pressure
level of a 20 Hz tone by comparison to an 1 kHz, 80 phon tone, such
that both will be perceived as equally loud?

7.3 Decibel weightings 

• Idea:

– Apply inverted equal-loudness contour to dBSPL

– Hope is to yield perceptually relevant loudness measure

• A-weighted decibel (dBA):

– rms-averaging measure
– Uses inversion of original 40 phon curve (Fletcher and Munson 1933)
– Widely used for much louder sounds (e.g., industrial noise) §

• C-weighted decibel (dBC):

– Models flatter equal loudness contours for larger spls
– So more suitable for measurements of sounds > 100 dB

• Old dBB and dBD weightings no longer widely used

• Example: Galaxy cm-140 spl meter in moss features A & C weightings

• dBITU works better for music and speech, since it accounts for transients

• However, consider more recent loudness unit lu for music production

7.4 Masking 

• Sounds can mask (i.e., render inaudible) other sounds

• Rules of 👍: Ability of a sound to mask other sounds increases with

– Sound pressure level (louder sounds are more likely to mask)
– Bandwidth (white noise is a better masker than a sine tone)

• Pratical application: Psychoacoustic data compression

– If we don’t hear it, why bother storing or transmitting it?
– Backbone of lossy audio file formats such as mp3

• Interpretation: Presence of masker causes temporary threshold shift for

1. simultaneous sounds in frequency neighborhood (spectral masking)
2. sounds that occur just before or after masker (temporal masking)
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Figure 3. Spectral masking (© Public 
domain image. Source: https://en. 
wikipedia . org / wiki / File : Audio _ 
Mask_Graph.png) 

7.4.1 Spectral masking (simultaneous) 

• Demo:

1. Play white noise & sine tone together
2. Decrease sine tone’s spl until nobody in class can hear it
3. Stop white noise

• Interpretation:

– Masked sound above absolute threshold of hearing in quiet
– Is therefore audible if masker is absent
– But masker temporarily raises threshold for nearby frequencies
– Masked sound falls below raised threshold and becomes inaudible

7.4.2 Temporal masking (post- & pre-masking) 

𝐴 (𝑡) 

Figure 4. Temporal masking 

𝑡 

Masker Masking threshold 

≈ 50 ms ≈ 200 ms 

Pre-masked 
sound 

Simultaneously 
masked sound 

Post-masked sound 

Threshold in quiet 

Again temporary threshold shift, but this time in time domain: 
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• Post-masking: raised threshold for ca. 200 ms after masker ceases

– Somewhat intuitive
– Same effect as on day after a loud concert (at shorter timescale)

• Pre-masking: raised threshold for ca. 50 ms before masker appears (!)3

– How to explain? Auditory perception is not instantaneous!
– Instead, ear ‘integrates’ perceptual stimuli over short time windows
– Example: Ear cannot follow amplitude oscillations of a 440 Hz tone

8 Pitch perception 

8.1 Combination tones4 

• Occur when 2 frequencies 𝑓1 and 𝑓2 played simultaneously

• We sometimes hear a third tone that is not physically present!

– In particular difference tones (most prominent & reliable)
– Much less reliable (and somewhat debated): sum tones

• Explanation: Non-linear distortions in inner ear

• Sound example:

– Actually playing: Stationary 𝑓1 & downward glissando 𝑓2 

– Also audible: Rising difference tone 2 ⋅ 𝑓1 − 𝑓2 

8.2 Missing fundamental 
• Remember: Harmonic spectrum’s pitch determined by fundamental 𝑓1 

• Remarkable: Applies even if 𝑓1 itself is absent from spectrum!

• Intuitive, since a given harmonic spectrum can only match a single 𝑓1 

• Sound example: Same melody played with

1. Harmonics 𝑓4 to 𝑓10 

2. Fundamental 𝑓1 only
3. Harmonics 𝑓1 to 𝑓10 

• Real-world examples & applications:

– Some woodwind instruments (e.g., oboe)
– MaxxBass™ plugin (© Waves Inc.)
– Extending the perceived range of subwoofers or organ pipes

3 Note that post-masking is occasion-
ally referred to as forward masking, 
while pre-masking is also called back-
ward masking. It’s all a matter of per-
spective. 

4 Combination tones are sometimes
also referred to as Tartini tones, named 
after violinist Giuseppe Tartini, one 
of the people credited with their dis-
covery (albeit not the first). 

Table 2. Combination tones 

Difference vs. sum tones 

𝑓1 − 𝑓2
2 ⋅ 𝑓1 − 𝑓2
3 ⋅ 𝑓1 − 𝑓2 

𝑓1 + 𝑓2
2 ⋅ 𝑓1 + 𝑓2
3 ⋅ 𝑓1 + 𝑓2 

… … 
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9 Sound localization 

• Refers to auditory system’s evaluation of where a sound ‘comes from’

• Again potentially significant differences between:

– Physics (sound source location)
– Perception (perceived location of sound)

• Localization blur describes (in)accuracy of sound localization

9.1 Localization blur depends on source signal 
Rules of 👍 (cf., Farnell 2010, p. 79): 

• Broadband sounds are easier to localize than narrow-band sounds.

• High frequencies are easier to localize than low frequencies.

• Sounds with sharp attacks are easier to localize than stationary sounds.

• Free-field conditions (no reflections from walls) facilitate localization.

• Ability of listener to move head increases localization accuracy

9.2 Localization blur depends on source direction 

Figure 5. Localization blur in the hor-
izontal plane. Experimental setup: 
100 ms white noise pulses, head im-
mobilized (Blauert 1996, p. 41. © 
1974 S. Hirzel Verlag, with transla-
tion © 1996 mit Press. All rights re-
served. This content is excluded from 
our Creative Commons license. For 
more information, see http://ocw.
mit.edu/help/faq-fair-use/) 

• Best localization in horizontal plane

– Minimum jnd (≈ 1°) for sounds in front of listener
– Not quite as good for sounds from behind
– Localization blur increases further towards sides

• Less reliable localization in median plane (which divides left-right)
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– Localization of elevated sounds depends on frequency (!)
– Bad localization also for sounds from below (rarely occurs in nature)

• Significant localization blur also with regards to distance

9.3 Interaural time differences (itd) 

𝜃 
𝜃 𝜃 

𝑟 

𝑟𝜃 

𝑟 ⋅ sin 𝜃 
Δ𝑡 (𝜃) = 

𝑟(sin 𝜃+𝜃)
𝑐 

Figure 6. Simple model of interaural 
time differences 

• Sound arrives earlier at the ear closer to the source (since 𝑐 < ∞)

• Results in interaural5 time difference (itd) 5 The term inter-aural is rooted in
Latin and means “between the ears”. 

• Itd can be modeled geometrically (cf., figure 6)

• Distance between ears: 𝑑 ≈ 17 … 21 cm

• Exercise: Largest possible itd?

• But note that we can detect itd as small as 30 µs!

9.4 Interaural level differences (ild) 
• Higher spl at ear closer to the source

• Two different causes for such interaural level differences (ild):

1. Inverse distance law: Δ𝐿 = 20 ⋅ log10 (𝑝
𝑝

𝑅
𝐿 ) = 20 ⋅ log10 ( 

𝑟
𝑟
𝑅
𝐿 

)

2. Acoustic shadow of head (affects hf more than diffracted lf)

9.5 Itd & ild over the frequency range 

• Itd & ild complement each other over frequency range:

– Itd dominant cue below 700 Hz
– Ild dominant cue above 1500 Hz
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𝑟𝐿 

𝑑 
𝑟𝑅 Figure 7. Interaural level differences 

diffracts 
around 

lf sound 

head 
𝑓 = 700 Hz 

acoustic shadow 

𝑑 

𝑓 = 6 kHz 𝑐 𝜆 = 𝑓 

𝑓 (Hz) Figure 8. Interaural time and level 
differences complement each other 
over the audible frequency range. 

• How can we explain this?

– Ild:

700 1500 

ITD 

ILD 

– Itd:

9.6 Cone of confusion 

• Example: Two sounds that yield identical itd & ild:

– Sound from 45° (front right)
– Sound from 135° (rear right)

• Generalized to 3d: Sounds on surface of cone of confusion around ear
yield identical itd & ild

• Consequence: itd & ild insufficient to explain all aspects of localization!

9.7 Head rotations resolve front-back ambiguities 

• Frequent (unconscious) head rotations resolve front-back ambiguities

• For example, clockwise head rotation will

– Decrease interaural differences for sound from 45° (front right)
– Increase interaural differences for sound from 135° (rear right) Itd & ild 

increase 
• Localization deteriorates for listening test subjects with fixed head

Figure 9. Head rotations resolve 
• But question remains: How does ear determine elevation & distance? front-back ambiguities in sound lo-

calization (cf., Blauert 1996, p. 180) 

Itd & ild 
decrease 
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9.8 Elevation cues 

• Observation: Pinna asymmetric along front-back & top-bottom axes

– Reflections from pinna result in incoming sound being filtered6 

– Reflection pattern & thus filter characteristics depend on direction!
– Ear decodes this information for front-back discrimination & deter-

mining elevation

• Similar cue due to reflections from shoulders (top-bottom asymmetry)

• But localization in median plane not as good as in horizontal plane!

• Depends on frequency (!) more than actual source direction7 

9.9 Distance cues 

• Distance is even harder to judge than elevation

• Especially in absolute terms (arguably true also for visual perception)

• Some cues that indicate increasing source distance to ear:

– Sound level drop due to inverse distance law 𝑝 ∝ 1
𝑟

– High-frequency attenuation due to atmospheric absorption
– Increasing ratio of reverberant to direct sound (in rooms)

9.10 Precedence effect 
• Phenomenon:

– Same signal arrives from different directions at different times
– Time delays Δ𝑡 between signals on the order of 1 ms to 50 ms
– Sound tends to be localized from direction of first arrival

• Referred to as precedence effect or law of the first wavefront

• Haas effect … special case of precedence effect. Haas showed that:

– Effect works even if delayed sound has higher spl than first wave
– However, the louder the delayed sound, the smaller Δ𝑡 can be before

it becomes distinct echo (Blauert 1996, p. 226)
– So tradeoff between Δ𝐿 and Δ𝑡

• Practical application: Delay lines in sound reinforcement systems

– Delayed loudspeakers on the sides of large auditoria with a front pa
– Idea: Bring up overall volume without compromising localization
– Used in theaters to increase speech intelligibility

12 of 13 

6 Filtering occurs whenever some fre-
quencies are emphasized, while oth-
ers are attenuated. We will see in fu-
ture lectures that reflections at short 
time intervals Δ𝑡 inevitably result in 
such filtering effects. This insight pro-
vides the basis for a lot of room acous-
tics theory, but also for the creation 
of sound effects such as flangers, pha-
sors, etc., which the guitar players 
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