21m.380 · Music and Technology Recording Techniques & Audio Production

Filters & Eqs

Session $8 \cdot$ Monday, October 3, 2016

FIGURE 1. The basic four-band division of the audible frequency spectrum (after Izhaki 2011, fig. 14.3)

FIGURE 2. Qualitative descriptions of various frequency ranges (after Izhaki 2011, fig. 14.4)

1 Student presentation (PA1)

•

2 Announcement: Recording sessions

- Still looking for volunteering musicians for 11/14 and 11/30 sessions
- Ideas are welcome!

3 Filtering the frequency spectrum

- Waveforms are great to visualize and edit sound in the time domain.
- But what about editing the spectrum (frequency content) of sound?
- *Filters* selectively amplify or attenuate certain frequencies ranges.
- Filters don't add frequencies that are not already present in the source! They are sound *processors* rather than generators.
- A filter is best described by its *frequency response*:1
 - Constant frequency response at o dB ... equivalent to piece of wire
 - Constant frequency response at +3 dB ... +3 dB amplification
 - But we're primarily interested in treating frequencies *differently*!
- E.g., combination of filters can be used to equalize uneven response
- But ironically, Eqs are often used to deliberately unequalize frequencies!
- Everything is a filter! Eqs, rooms, analog circuits, speaker cabinets, ...

¹ The *frequency response* of a filter describes its gain as a function of frequency.

Filter type	Parameter	Symbol	Unit	Definition
Cut	Cut-off frequency Slope (or roll-off)	$\frac{f_c}{}$	Hz dB/octave	at –3 dB point
Shelving	Gain Center frequency	$g f_c$	dB Hz	max. amplification or attenuation at ^g / ₂
Peaking	Gain Center frequency Bandwidth Quality (or Q factor)	$g f_c \Delta f Q$	dB Hz Hz 1	max. amplification or attenuation at g_{max} between $-3 dB$ (or $+3 dB$) points $Q = f_c/\Delta f$

4 Filter types & parameters

TABLE 1. Filter parameters

4.1 Cut filters

- Low-cut (or high-pass) vs. high-cut (or low-pass) filters
- *Cut-off frequency* f_C at -3 dB (*not* -6 dB!) by definition
- Slope or roll-off (dB per octave)²

² Remember that an octave is defined as the frequency ratio $f_1: f_2 = 1: 2$, e.g, there is an octave between 30 and 60 Hz or between 1 and 2 kHz.

FIGURE 4. Frequency response of a high-cut (low-pass) filter

4.2 Shelving filters

- *Gain* g > 0 (boost) or g < 0 (cut) with regards to 0 dB response
- Center frequency f_C at $g/_2$

4.3 Peaking filters

- *Gain* g > 0 (boost) or g < 0 (cut) with regards to 0 dB response
- Peaking filters with *g* < 0 are also called *notch filters*
- Center frequency f_C at g_{max}
- Bandwidth Δf defined by -3 dB (not 6 dB!) points
- But *quality* $Q = \frac{f_C}{\Lambda f}$ relates better to sound perception (why?)

FIGURE 5. Frequency response of a low-frequency shelving filter

FIGURE 6. Frequency response of a high-frequency shelving filter

FIGURE 7. Frequency response of a peaking filter

5 Equalizers (EQS)

Combination of multiple filters, commonly:

- Shelving or cut filters (sometimes switchable) for LF and HF bands
- Peaking filters for variable number of *mid bands* (often 1 or 2)

5.1 Typical applications

- Remove low-frequency rumble: low-cut filter
- Noise reduction: нь shelving filter
- Remove AC hum: notch filter at multiples of 60 Hz (US) or 50 Hz (EU)
- Reduce unpleasant resonances at specific pitch(es): notch filters
- Remove DC offset: steep low-cut at ca. 5 Hz
- Separate instruments across audible spectrum (e.g., reduce leakage)
- Add 'brilliance': нь shelving filter

5.2 Parametric Eqs

- Controlled by parameters outlined in table 1
- Really first choice for Eqing individual instruments!
- Recommended DAW plugins:
 - Reaper: ReaEQ (comes with Reaper)
 - Ardour: x42-eq (6 Band; mono & stereo versions) by Robin Gareus Installation on Debian/Ubuntu: sudo apt-get install x42-plugins

5.3 Graphic Eqs

- Many frequency bands (say, 31), with one fader per band
- Initially more intuitive, but in many ways also less flexible why?
 - -_____
- Center frequencies of bands are spaced logarithmically, not linearly!
 - Idea: each band covers a constant frequency interval
 - Typical example: 10 octave bands $(1 : 2^1)$ from 31.5 Hz to (ca.) 16 kHz
 - Or: 31 $\frac{1}{3}$ -octave bands (1 : 2^{1/3}) from 20 Hz to (ca.) 20 kHz
- Typically applied to a stereo mix (rather than an individual instrument)
- Often used to compensate room acoustics in live engineering
 - Suppress feedback & undesirable resonances
 - Frequently static settings (sometimes fixated with screws)

FIGURE 8. Parametric EQ in an input channel strip of a Mackie CR1604-VLZ mixing desk (© LOUD Technologies Inc. With edits. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit. edu/help/faq-fair-use/)

Center frequency/Hz

Figure 9. Principle of a graphic EQ with 31 $\frac{1}{3}$ -octave bands

5.4 Eqing techniques & recommendations

- Rule of *b*: *Favor cutting over boosting!*
- Aim to retain peak level (might require adjusting overall output gain)
- Eqing almost always requires a compromise:
 - A high-cut filter to remove tape noise might also affect piano sound
 - A low-cut filter to remove rumble might also affect kick drum 'oomph'
- Eqing bass instruments traditionally challenging for novice engineers³
- Demo in Reaper: Sweeping the frequency range⁴
 - 1. Instantiate peak filter in a parametric EQ
 - 2. Set peak filter to high *g* and high *Q* (or small bandwidth)
 - 3. Slowly sweep f_c through frequency range
 - 4. When you have found the frequency, adjust *g* and *Q* to taste

6 **Preview ED2 assignment**

References & further reading

- Ariza, Christopher (2012). 21M.380 Music and Technology. Filters and Filter Parameters. URL: http://ocw.mit.edu/courses/music-and-theaterarts/21m-380-music-and-technology-recording-techniques-andaudio-production-spring-2012/lecture-notes/MIT21M_380S12_ lec07.pdf (visited on 09/30/2015).
- Izhaki, Roey (2011). "Equalizers." In: Mixing Audio. Concepts, Practices and Tools. 2nd ed. Focal Press. Chap. 14, pp. 202–57. ISBN: 978-0240522227. MIT LIBRARY: 002302617. URL: http://libproxy.mit.edu/login?url= http://search.ebscohost.com/login.aspx?direct=true&db= nlebk&AN=454037&site=ehost-live&ebv=EB&ppid=pp_202 (visited on 11/22/2014). Requires MIT library login (max. 1 reader at a time).
- Katz, Bob (2014). "Equalization techniques." In: *Mastering Audio. The Art and the Science*. 3rd ed. Burlington, ма: Focal Press. Chap. 4, pp. 55–71. ISBN: 978-0240818962. MIT LIBRARY: 002307049. On course reserve at the Lewis Music Library.
- Senior, Mike (2011a). "Beyond EQ." In: *Mixing Secrets for the Small Studio*. 1st ed. Focal Press. Chap. 12, pp. 191–202. ISBN: 978-0240815800. MIT LIBRARY: 002092991. Electronic resource. Accompanying information and sound examples: http://www.cambridge-mt.com/ms-ch12.htm.
- (2011b). "Equalizing for a reason." In: Mixing Secrets for the Small Studio.
 1st ed. Focal Press. Chap. 11, pp. 171–90. ISBN: 978-0240815800. MIT
 LIBRARY: 002092991. Electronic resource. Accompanying information and sound examples: http://www.cambridge-mt.com/ms-chl1.htm.

³ Senior (2011a, p. 176) has collected recommendations by different sound engineers on how to EQ bass instruments.

⁴ The purpose of this technique is to locate frequencies in the spectrum that require adjustment by deliberately exaggerating them. 21M.380 Music and Technology: Recording Techniques and Audio Production Fall 2016

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.