21m.380 · Music and Technology Recording Techniques & Audio Production

Sound quality & critical listening

Session 22 · Wednesday, November 23, 2016

1 Student presentations (PA1)

•

•

2 Announcement: Schlepping reminder

- Please remember if you are signed up for pre- or post-class schlepping for either recording session on Mon, 11/28, Wed, 11/30.
- Pre-class schlepping: Meet at room **10**, 10 minutes before class

3 Digital sound quality

3.1 Sample rate

- Higher sample rate: higher frequencies can be accurately reproduced
- Remember sampling theorem: $f_S \stackrel{!}{>} 2 \cdot f_{max}$
- But since upper range of hearing is 20 kHz, what justifies $f_S = 192$ kHz?
- Practical engineering reason: Reconstruction filter design (filter slope)!
- Many also argue in favor of a real *perceptual* difference (cf., Schoepe 2006, p. 67, Katz 2014a, p. 25)
- Montgomery (2012) argues that even so, "192 kHz digital music files offer no benefits" since transducers and power amplifiers are not designed to be distortion-free in the ultrasonic range.
- Katz (2014b) also discusses subject in depth
- Also: Sound fidelity as a social & cultural product (Sterne 2003)

3.2 Bit depth

- No hard limit comparable to sampling theorem
- Higher bit depth *N*: larger dynamic range $\Delta L \approx 6 \cdot N$ (cf., table 1)
- Compare to dynamic range of human ear ($\approx 130 \text{ dB}$)

TABLE 1. Dynamic range ΔL for different bit depths N

Ν	$\Delta L/dB$
8 16	48 96
24	144

- For bit depths > 24, other rationales apply (DSP round-off errors etc.)
- But what if music itself exhibits a much smaller dynamic range?
- Sound examples: Can you hear the difference between 8 bit & 16 bit?

4 Ear training

- Represents limiting factor more often than gear (Senior 2011, p. 2)
- Ladies and gentlemen, meet the human ear!
 - Detects pressure changes of a billionth of atmospheric pressure
 - Handles sound pressures 10 000 000 000 000 times larger than that
 - Covers a range of 9-10 octaves
 - Is an excellent learner!
- Integrate ear training into everyday music listening (Katz 2014a, pp. 25 f.)
- Ear training exercises specifically for sound engineers:
 - Katz (2014a, pp. 27 ff.)
 - Corey (2010)

4.1 Rhythm, melody, harmony

- Ear training as part of a traditional music education (e.g., 21M.051)
- Examples of typical exercises:
 - Meter identification (e.g., $\frac{3}{4}$ vs. $\frac{6}{8}$)
 - Rhythm transcription
 - Interval recognition (song mnemonics)
 - Triad identification (M, m, A, or d? Root position or inversion?)
 - Scale recognition (M or m? Natural, harmonic, or melodic minor?)
 - Melody transcription (monophonic or polyphonic)
 - Cadence identification (Authentic, plagal, deceptive, or half?)
- Open source software package (Mac, Win, Linux): GNU Solfege

FIGURE 1. "Transcribe both parts" (key and first note for both staves given). Example from an entry exam for the *Tonmeister* program at the Vienna University of Music.

 Freely available, cross-platform, open source © Rule of : If you can sing it, you can hear it. 	
4.2 Learning to distinguish different frequency ranges ¹	¹ Cf., Katz 2014a, p. 27.
Popular exercise:	
 – 10 bandpass-filtered noise bands at different center frequencies – Bandpass center frequencies given – Put center frequencies in order in which examples were played 	
 Available as online listening test series by Pigeon (2007–2014) 	
 Available as offinite insterning test series by Figeon (2007–2014) Also: <i>Golden Ears</i> series of training CDs (Moulton 1995) 	
4.3 Recognizing bandwidth limiting ²	² Cf., Katz 2014a, pp. 28 f.
Sound examples in SoX:	
<pre>\$ play test.wav rate 44.1k ← \$ play test.wav rate 22.05k ← \$ play test.wav rate 16k ← \$ play test.wav rate 8k ←</pre>	
4.4 Identifying musical instruments ³	³ Cf., Katz 2014a, p. 35.
• Upright vs. electric bass	
• Soprano vs. alto vs. tenor vs. baritone saxophone	
Curved vs. straight soprano sax	
• Trumpet vs. flugelhorn	
• Oboe vs. bassoon vs. English horn	
• String quartet: first vs. second violin	
• Piano: beating strings on same key	
4.5 Distinguishing sampled from 'real' pianos ⁴	⁴ Cf., Katz 2014a, p. 30.
• Sound example: Same tune played by 2 different pianos	
• Which is sampled, which is 'real'?	

• Excellent hardware tool: your voice!

⁵ Cf., Katz 2014a, pp. 30 f.

4.6 Identifying tiny differences⁵

Make a test master with 0.5 dB difference in equalization of one band. Can you hear the difference in a blind test? (Katz 2014a, p. 30)

- Implemented as SoX example:
 - \$ play test.wav equalizer 4k 0.5o +18 ←
 - $\$ play test.wav equalizer 4k 0.5o +18.5 \leftarrow
- Get to know (and improve) your JND for various sound parameters
- Online exercises by Pigeon (2007–2014)

4.7 Is it actually stereo?⁶

- Try to judge this solely by ear!
- Confirm your judgement with the help of:
 - 1. Level meter
 - 2. Visual waveform inspection (at high zoom levels)
 - 3. Phase correlation meter
 - 4. Mix L with phase-inverted R. If result is silence, it was mono!

4.8 Identifying lossy encoder artifacts⁷

- Sound example: MP3 file re-encoded 0, 5, 20 & 50 times
- Many more examples can be found on YouTube ☺

4.9 Identifying other artifacts⁸

- Comb filtering (interference between reflections and direct sound)
- Phasing & flanging (comb filtering that varies over time)
- Proximity effect (bass boost for directional microphones close to source)
- Different flavors of overload (e.g., tube saturation vs. digital clipping)
- Clicks due to rapid amplitude changes (e.g., bad splices)
- Pops due to DC offset
- Dropouts (digital vs. analog; best checked on headphones)
- Bad edits (inconsistent reverberation; obvious cuts, splices, or crossfades; etc.)
- Polarity problems (e.g., out-of-phase stereo speaker pair)
- 'Pumping' or 'breathing' compressors

⁶ Cf., Katz 2014a, pp. 30 f.

⁷ Cf., Katz 2014a, pp. 31 f.

⁸ Cf., Katz 2014a, pp. 27 ff., 35 f.

- Stereo center shift
- Unstable phantom source localization
- Hum frequencies (60 Hz in US, 50 Hz in EU)
- Wow and flutter (tape speed irregularities)

5 Listening beyond the ears

- Video: Demonstration of the *McGurk effect* (BBC 2017)
- Factors beyond the auditory system which affect auditory perception:
 - Visual perception (Katz 2014a, p. 34)
 - Habituation (Katz 2014a, p. 31)
 - Focus (Katz 2014a, p. 32)
 - Peer pressure (Katz 2014a, p. 34)
 - Psychology (expectations) (Katz 2014a, pp. 30 f.)
- Anecdote: The Vienna high-end audio store
- · Importance of systematic, unbiased listening test methodologies

6 Subjective listening tests

- Listening test terminology
 - Objective tests (models) vs. subjective tests (human subjects)
 - Blind tests & double-blind tests (subject and tester blinded)
 - Preference vs. discrimination (or equality) tests
- Software tool squishyball
 - Open-source command-line tool by 'Monty' Montgomery (xiph.org)
 - Implements basic subjective listening test methodologies
 - On Debian-based Linux systems (e.g., Ubuntu): sudo apt-get install squishyball

6.1 Casual comparison

- · Mixing requires frequent and rapid decision making
- Good idea to establish a method to efficiently *compare* different versions
- Squishyball demo:
 - \$ squishyball --casual A.wav B.wav C.wav D.wav [...] ←
 - Use 1, 2, 3, or \uparrow , \downarrow keys to switch between samples
 - Samples are presented in specified order (no randomization)
 - Single trial without selection

6.2 (AB) or XY: Paired comparison

- More informative than casual comparison: Ask a specific question
- (AB) or XY test: Which of 2 samples is preferred in terms of _?
 - Samples are *known* to be different (not an equality test)
 - Need to know in advance the attribute likely to change ©
- Squishyball demo:
 - \$ squishyball -n 5 --ab A.wav B.wav ←
 - -n ... number of trials (defaults to 20)
 - a, b: switch between samples
 - A, B: select preferred sample and move on to next trial
 - Presentation order re-randomized for each trial

6.3 ABX test

- Rule of () in mixing: If you can't *hear* an edit, don't do it.
- So question becomes: Perceptible difference between 2 samples?
- Problem: How to reliably determine whether there is?
 - Answer: Through an equality test
 - Different methodologies exist: ABX, AXY, (AB)X, (XXY)
- Simplest is ABX test (Munson and Gardner 1950)
 - Widely used in testing audio data compression algorithms
 - Flaw: Sample order bias (test always starts with AB) 🛇
 - Method: Is X identical to A or identical to B?
- Squishyball demo:
 - \$ squishyball -n 5 --abx A.wav B.wav ←
 - -n ... number of trials (defaults to 20)
 - a, b, ×: switch between ABX
 - A, B: select sample that X matches and move on to next trial
 - Presentation order re-randomized for each trial

6.4 (AB)X: Duo-trio test with constant reference

- Objective: Perceptible difference between 2 samples?
- Method: Is X identical to 1 or identical to 2?
- Partly eliminates sample order bias (can be ABX or BAX) ☺
- But not entirely (since X is always last) 😳
- Not implemented in squishyball

- A, B knowns
- X, Y unknowns
- (AB) order unknown (AB or BA)

```
Hence, (AB) = XY
```

6.5 (XXY): Triangle test

- Objective: Perceptible difference between 2 samples?
- Method: Which of 3 samples is the odd one out?
- Eliminates sample order bias 😊
- Squishyball demo:
 - $\$ squishyball -n 5 --xxy A.wav B.wav \leftarrow
 - -n ... number of trials (defaults to 20)
 - 1, 2, 3: switch between (XXY)
 - Mark odd one out and move on to next trial:
 - $\widehat{\Upsilon} + 1 = ! \text{ for } Y = 1$
 - $\hat{U} + 2 = 0 \text{ for } Y = 2$ $\hat{U} + 3 = \# \text{ for } Y = 3$
 - Identities (A = Y vs. B = Y) and order re-randomized per trial

7 Caring for your ears

- Arguably the sound engineer's most important tool
- A 'piece of equipment' that no money in the world can replace!
- Ear training also means learning when and how to protect your ears.

7.1 Hearing disorders

- Stapedius reflex: ear's (very limited!) built-in protection mechanism
- Hearing loss due to age (review: $\approx 1 \text{ kHz per life decade}$)
- Noise-induced hearing loss: irreversible damage to inner ear hair cells
- Tinnitus: Hearing sound when no external sound is present
 - Often described as ringing, whistling, buzzing, roaring, etc.
 - Various causes: Noise-induced hearing loss, ear infections, brain tumors, emotional stress, certain drugs, etc.
 - Objective vs. subjective tinnitus
 - Intermittent tinnitus (for a few seconds) is a common occurence
 - Continuous tinnitus requires *early* treatment before it becomes chronic!

7.2 Hearing protection

- Consider getting custom-moulded earplugs (ca. \$100)
 - Option Nº1: Non-neutral frequency response, but high attenuation
 - Option №2: Neutral frequency response, but lower net attenuation
- Avoid long-term exposure to high sound pressure levels.
- Avoid loud impulses close to your ears (e.g., firecrackers).
- Don't mix at too high sound pressure levels.
 - Studio monitor calibration procedure recommended by Katz (2014c, pp. 263 f.)
 - Pink noise at o dB monitor control should yield 83 dB_{SPL} (C-weighted, slow meter response) at sweet spot
- Be particularly careful when programming audio (e.g., Pd).
- Be particularly careful with headphones.
- Take breaks.

References & further reading

- British Broadcasting Corporation (2017). *Try The McGurk Effect! Horizon: Is Seeing Believing? – BBC Two*. URL: https://www.youtube.com/watch? v=G-1N8vWm3m0 (visited on 02/04/2017).
- Corey, Jason (2010). *Audio Production and Critical Listening: Technical Ear Training*. 1st ed. Focal Press. 191 pp. MIT LIBRARY: 002181692. Book and accompanying cd.
- Katz, Bob (2014a). "An earientation session." In: *Mastering Audio. The Art and the Science*. 3rd ed. Burlington, ма: Focal Press. Chap. 2, pp. 25–36. ISBN: 978-0240818962. MIT LIBRARY: 002307049. On course reserve at the Lewis Music Library.
- (2014b). "High sample rates. Is this where it's at?" In: *Mastering Audio. The Art and the Science*. 3rd ed. Burlington, ма: Focal Press. Chap. 23, pp. 311–20. ISBN: 978-0240818962. MIT LIBRARY: 002307049. On course reserve at the Lewis Music Library.
- (2014с). "The loudness revolution. Calibrated monitoring." In: *Mastering Audio. The Art and the Science*. 3rd ed. Burlington, ма: Focal Press. Chap. 19, pp. 263–72. ISBN: 978-0240818962. MIT LIBRARY: 002307049. On course reserve at the Lewis Music Library.
- Montgomery, Christopher 'Monty' (Mar. 1, 2012). 24/192 Music Downloads... and why they make no sense. URL: https://www.xiph.org/ ~xiphmont/demo/neil-young.html (visited on 05/30/2017).
- Moulton, David (1995). *Golden Ears*. MIT LIBRARY: 001664779. Set of 8 CDs plus user guide.
- Munson, W. A. and Mark B. Gardner (Nov. 14, 1950). "Standardizing auditory tests." In: *Journal of the Acoustical Society of America* 22.6, p. 675. DOI: 10.1121/1.1917190.

- Pigeon, Stéphane (2007–2014). *Blind Listening Tests*. URL: http://www.audiocheck.net/blindtests_index.php (visited on 10/03/2014).
- Rumsey, Francis and Tim McCormick (2009). "Sound quality." In: *Sound and Recording. An Introduction.* 6th ed. Focal Press. Chap. 18, pp. 563–90. MIT LIBRARY: 002147704.
- Schoepe, Zenon (May–June 2006). "Rupert Neve. The man who helped define the industry and set the parameters for the appreciation of performance and quality talk shops." In: Resolution. The Audio Production Magazine 5.4 (May/June 2006), pp. 66–7. URL: https://www. resolutionmag.com/wp-content/uploads/2016/02/Rupert-Neve-Rupert-Neve-Designs.pdf (visited on 11/13/2016).
- Senior, Mike (2011). *Mixing Secrets for the Small Studio*. 1st ed. Focal Press. 352 pp. ISBN: 978-0240815800. MIT LIBRARY: 002092991. Electronic resource. Hardcopy version at MIT LIBRARY: 002178705. On course reserve at the Lewis Music Library.
- Sterne, Jonathan (2003). "The social genesis of sound fidelity." In: *The Audible Past. Cultural Origins of Sound Reproduction*. Durham and London: Duke University Press. Chap. 5 (excerpt), pp. 213–40. MIT LIBRARY: 001141682.

21M.380 Music and Technology: Recording Techniques and Audio Production Fall 2016

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.