21m.38o - Music and Technology
 Recording Techniques \& Audio Production

Sound quality \& critical listening

Session 22 • Wednesday, November 23, 2016

1 Student presentations (PA1)

2 Announcement: Schlepping reminder

- Please remember if you are signed up for pre- or post-class schlepping for either recording session on Mon, 11/28, Wed, 11/30.
- Pre-class schlepping: Meet at room $\square 10$ minutes before class

3 Digital sound quality

3.1 Sample rate

- Higher sample rate: higher frequencies can be accurately reproduced
- Remember sampling theorem: $f_{S} \stackrel{!}{>} 2 \cdot f_{\text {max }}$
- But since upper range of hearing is 20 kHz , what justifies $f_{S}=192 \mathrm{kHz}$?
- Practical engineering reason: Reconstruction filter design (filter slope)!
- Many also argue in favor of a real perceptual difference (cf., Schoepe 2006, p. 67, Katz 2014a, p. 25)
- Montgomery (2012) argues that even so, " 192 kHz digital music files offer no benefits" since transducers and power amplifiers are not designed to be distortion-free in the ultrasonic range.
- Katz (2014b) also discusses subject in depth
- Also: Sound fidelity as a social \& cultural product (Sterne 2003)

3.2 Bit depth

- No hard limit comparable to sampling theorem
- Higher bit depth N : larger dynamic range $\Delta L \approx 6 \cdot N$ (cf., table 1)
- Compare to dynamic range of human ear $(\approx 130 \mathrm{~dB})$

Table 1. Dynamic range ΔL for different bit depths N

N	$\Delta L / \mathrm{dB}$
8	48
16	96
24	144

- For bit depths > 24, other rationales apply (DSP round-off errors etc.)
- But what if music itself exhibits a much smaller dynamic range?
- Sound examples: Can you hear the difference between 8 bit \& 16 bit?

4 Ear training

- Represents limiting factor more often than gear (Senior 2011, p. 2)
- Ladies and gentlemen, meet the human ear!
- Detects pressure changes of a billionth of atmospheric pressure
- Handles sound pressures 10000000000 ooo times larger than that
- Covers a range of 9-10 octaves
- Is an excellent learner!
- Integrate ear training into everyday music listening (Katz 2014a, pp. 25 f.)
- Ear training exercises specifically for sound engineers:
- Katz (2014a, pp. 27 ff.)
- Corey (2010)

4.1 Rhythm, melody, harmony

- Ear training as part of a traditional music education (e.g., 21M.051)
- Examples of typical exercises:
- Meter identification (e.g., $\mathbf{4}_{\mathbf{4}}^{\mathbf{3}}$ vs. $\mathbf{8}_{\mathbf{6}}$)
- Rhythm transcription
- Interval recognition (song mnemonics)
- Triad identification ($\mathrm{M}, \mathrm{m}, \mathrm{A}$, or d ? Root position or inversion?)
- Scale recognition (M or m? Natural, harmonic, or melodic minor?)
- Melody transcription (monophonic or polyphonic)
- Cadence identification (Authentic, plagal, deceptive, or half?)
- Open source software package (Mac, Win, Linux): Gnu Solfege
- Excellent hardware tool: your voice!
- Freely available, cross-platform, open source ©
- Rule of : If you can sing it, you can hear it.

4.2 Learning to distinguish different frequency ranges ${ }^{1} \quad{ }^{1}$ Cf., Katz 2014 a P. 27.

- Popular exercise:
- 10 bandpass-filtered noise bands at different center frequencies
- Bandpass center frequencies given
- Put center frequencies in order in which examples were played
- Available as online listening test series by Pigeon (2007-2014)
- Also: Golden Ears series of training cds (Moulton 1995)

4.3 Recognizing bandwidth limiting ${ }^{2}$

Sound examples in SoX:

```
$ play test.wav rate 44.1k \hookleftarrow
$ play test.wav rate 22.05k 
$ play test.wav rate 16k \hookleftarrow
$ play test.wav rate 8k \hookleftarrow
```


4.4 Identifying musical instruments ${ }^{3}$

- Upright vs. electric bass
- Soprano vs. alto vs. tenor vs. baritone saxophone
- Curved vs. straight soprano sax
- Trumpet vs. flugelhorn
- Oboe vs. bassoon vs. English horn
- String quartet: first vs. second violin
- Piano: beating strings on same key

4.5 Distinguishing sampled from 'real' pianos ${ }^{4}$

- Sound example: Same tune played by 2 different pianos
- Which is sampled, which is 'real'?
${ }^{3}$ Cf., Katz 2014a p. 35.
${ }^{2}$ Cf., Katz 2014a. pp. 28 f.
-

${ }^{4}$ Cf., Katz 2014a p. 30.
${ }^{4}$ Cf., Katz 2014a p. 30.
${ }^{5}$ Cf., Katz 2014a. pp. 30 f.

4.6 Identifying tiny differences ${ }^{5}$

Make a test master with 0.5 dB difference in equalization of one band. Can you hear the difference in a blind test? (Katz 2014a, p. 30)

- Implemented as SoX example:
play test.wav equalizer 4k $0.50+18 \hookleftarrow$
\$ play test.wav equalizer $4 \mathrm{k} 0.50+18.5 \hookleftarrow$
- Get to know (and improve) your JND for various sound parameters
- Online exercises by Pigeon (2007-2014)

4.7 Is it actually stereo? ${ }^{6}$

- Try to judge this solely by ear!
- Confirm your judgement with the help of:

1. Level meter
2. Visual waveform inspection (at high zoom levels)
3. Phase correlation meter
4. Mix l with phase-inverted r. If result is silence, it was mono!

4.8 Identifying lossy encoder artifacts ${ }^{7}$

- Sound example: mP3 file re-encoded $0,5,20 \& 50$ times
- Many more examples can be found on YouTube ©

4.9 Identifying other artifacts ${ }^{8}$

- Comb filtering (interference between reflections and direct sound)
- Phasing \& flanging (comb filtering that varies over time)
- Proximity effect (bass boost for directional microphones close to source)
- Different flavors of overload (e.g., tube saturation vs. digital clipping)
- Clicks due to rapid amplitude changes (e.g., bad splices)
- Pops due to DC offset
- Dropouts (digital vs. analog; best checked on headphones)
- Bad edits (inconsistent reverberation; obvious cuts, splices, or crossfades; etc.)
- Polarity problems (e.g., out-of-phase stereo speaker pair)
- 'Pumping' or 'breathing' compressors
- Stereo center shift
- Unstable phantom source localization
- Hum frequencies (60 Hz in us, 50 Hz in eu)
- Wow and flutter (tape speed irregularities)

5 Listening beyond the ears

- Video: Demonstration of the McGurk effect (BBC 2017)
- Factors beyond the auditory system which affect auditory perception:
- Visual perception (Katz 2014a, p. 34)
- Habituation (Katz 2014a, p. 31)
- Focus (Katz 2014a p. 32)
- Peer pressure (Katz 2014a, p. 34)
- Psychology (expectations) (Katz 2014a, pp. 30 f.)
- Anecdote: The Vienna high-end audio store
- Importance of systematic, unbiased listening test methodologies

6 Subjective listening tests

- Listening test terminology
- Objective tests (models) vs. subjective tests (human subjects)
- Blind tests \& double-blind tests (subject and tester blinded)
- Preference vs. discrimination (or equality) tests
- Software tool squishyball
- Open-source command-line tool by 'Monty' Montgomery (xiph. org)
- Implements basic subjective listening test methodologies
- On Debian-based Linux systems (e.g., Ubuntu): sudo apt-get install squishyball

6.1 Casual comparison

- Mixing requires frequent and rapid decision making
- Good idea to establish a method to efficiently compare different versions
- Squishyball demo:
\$ squishyball --casual A.wav B.wav C.wav D.wav [...] \downarrow
- Use $1,2,3$, or \uparrow, \downarrow keys to switch between samples
- Samples are presented in specified order (no randomization)
- Single trial without selection

6.2 (AB) or XY: Paired comparison

- More informative than casual comparison: Ask a specific question
- (AB) or XY test: Which of 2 samples is preferred in terms of _?
- Samples are known to be different (not an equality test)
- Need to know in advance the attribute likely to change $)^{\circ}$
- Squishyball demo:
\$ squishyball -n 5 --ab A.wav B.wav \hookleftarrow
- -n ... number of trials (defaults to 20)
- a, b: switch between samples
- A , B : select preferred sample and move on to next trial
- Presentation order re-randomized for each trial

6.3 ABX test

- Rule of in mixing: If you can't hear an edit, don't do it.
- So question becomes: Perceptible difference between 2 samples?
- Problem: How to reliably determine whether there is?
- Answer: Through an equality test
- Different methodologies exist: ABX, AXY, (AB)X, (XXY)
- Simplest is ABX test (Munson and Gardner 1950)
- Widely used in testing audio data compression algorithms
- Flaw: Sample order bias (test always starts with AB) ()
- Method: Is X identical to A or identical to B?
- Squishyball demo:
\$ squishyball -n 5 --abx A.wav B.wav \hookleftarrow
- $-\mathrm{n} \ldots$ number of trials (defaults to 20)
$-a, b, x$: switch between ABX
- A , B : select sample that X matches and move on to next trial
- Presentation order re-randomized for each trial

6.4 (AB)X: Duo-trio test with constant reference

- Objective: Perceptible difference between 2 samples?
- Method: Is X identical to 1 or identical to 2 ?
- Partly eliminates sample order bias (can be ABX or BAX) ©
- But not entirely (since X is always last) (2)
- Not implemented in squishyball

6.5 (XXY): Triangle test

- Objective: Perceptible difference between 2 samples?
- Method: Which of 3 samples is the odd one out?
- Eliminates sample order bias ()
- Squishyball demo:
\$ squishyball -n 5 --xxy A.wav B.wav \downarrow
- -n ... number of trials (defaults to 20)
$-1,2,3$: switch between (XXY)
- Mark odd one out and move on to next trial:

$\hat{v}+1$	$=!$ for $Y=1$
$\hat{U}+2$	$=0$
for $Y=2$	
$\hat{U}+2$	$=\#$ for $Y=3$

- Identities $(A=Y$ vs. $B=Y)$ and order re-randomized per trial

7 Caring for your ears

- Arguably the sound engineer's most important tool
- A 'piece of equipment' that no money in the world can replace!
- Ear training also means learning when and how to protect your ears.

7.1 Hearing disorders

- Stapedius reflex: ear's (very limited!) built-in protection mechanism
- Hearing loss due to age (review: $\approx 1 \mathrm{kHz}$ per life decade)
- Noise-induced hearing loss: irreversible damage to inner ear hair cells
- Tinnitus: Hearing sound when no external sound is present
- Often described as ringing, whistling, buzzing, roaring, etc.
- Various causes: Noise-induced hearing loss, ear infections, brain tumors, emotional stress, certain drugs, etc.
- Objective vs. subjective tinnitus
- Intermittent tinnitus (for a few seconds) is a common occurence
- Continuous tinnitus requires early treatment before it becomes chronic!

7.2 Hearing protection

- Consider getting custom-moulded earplugs (ca. \$100)
- Option №1: Non-neutral frequency response, but high attenuation
- Option №2: Neutral frequency response, but lower net attenuation
- Avoid long-term exposure to high sound pressure levels.
- Avoid loud impulses close to your ears (e.g., firecrackers).
- Don't mix at too high sound pressure levels.
- Studio monitor calibration procedure recommended by Katz 2014 C . pp. 263 f.)
- Pink noise at o dB monitor control should yield $83 \mathrm{~dB}_{\mathrm{SPL}}$ (C-weighted, slow meter response) at sweet spot
- Be particularly careful when programming audio (e.g., Pd).
- Be particularly careful with headphones.
- Take breaks.

References \& further reading

British Broadcasting Corporation (2017). Try The McGurk Effect! - Horizon: Is Seeing Believing? - BBC Two. url: https://www. youtube.com/watch? $\mathrm{v}=\mathrm{G}-1 \mathrm{~N} 8 \mathrm{vWm} 3 \mathrm{~m} 0$ (visited on 02/04/2017).
Corey, Jason (2010). Audio Production and Critical Listening: Technical Ear Training. 1st ed. Focal Press. 191 pp. mit library: 002181692 . Book and accompanying cD.
Katz, Bob (2014a). "An earientation session." In: Mastering Audio. The Art and the Science. 3rd ed. Burlington, ma: Focal Press. Chap. 2, pp. 25-36. ISBN: 978-0240818962. MIT LIBRARY: 002307049. On course reserve at the Lewis Music Library.

- (2014b). "High sample rates. Is this where it's at?" In: Mastering Audio. The Art and the Science. 3rd ed. Burlington, ma: Focal Press. Chap. 23, pp. 311-20. ISBN: 978-0240818962. mit library: 002307049. On course reserve at the Lewis Music Library.
- (2014c). "The loudness revolution. Calibrated monitoring." In: Mastering Audio. The Art and the Science. 3rd ed. Burlington, ma: Focal Press. Chap. 19, pp. 263-72. ISBN: 978-0240818962. mit library: 002307049 On course reserve at the Lewis Music Library.
Montgomery, Christopher 'Monty' (Mar. 1, 2012). 24/192 Music Downloads... and why they make no sense. url: https : / / www . xiph . org / ~xiphmont/demo/neil-young.html (visited on 05/30/2017).
Moulton, David (1995). Golden Ears. mit Library: 001664779 . Set of 8 cds plus user guide.
Munson, W. A. and Mark B. Gardner (Nov. 14, 1950). "Standardizing auditory tests." In: Journal of the Acoustical Society of America 22.6, p. 675. Dor: $10.1121 / 1.1917190$

Pigeon, Stéphane (2007-2014). Blind Listening Tests. URL: http : / / www audiocheck.net/blindtests_index.php (visited on 10/o3/2014).
Rumsey, Francis and Tim McCormick (2009). "Sound quality." In: Sound and Recording. An Introduction. 6th ed. Focal Press. Chap. 18, pp. 56390. MIt Library: 002147704 .

Schoepe, Zenon (May-June 2006). "Rupert Neve. The man who helped define the industry and set the parameters for the appreciation of performance and quality talk shops." In: Resolution. The Audio Production Magazine 5.4 (May/June 2006), pp. 66-7. url: https://www. resolutionmag. com / wp - content / uploads / 2016/02 / Rupert - Neve-Rupert-Neve-Designs.pdf(visited on 11/13/2016).
Senior, Mike (2011). Mixing Secrets for the Small Studio. 1st ed. Focal Press. 352 pp. Isbn: 978-0240815800. mit Library: 002092991. Electronic resource. Hardcopy version at mit Library: 002178705. On course reserve at the Lewis Music Library.
Sterne, Jonathan (2003). "The social genesis of sound fidelity." In: The Audible Past. Cultural Origins of Sound Reproduction. Durham and London: Duke University Press. Chap. 5 (excerpt), pp. 213-40. mit library: 001141682 .

MIT OpenCourseWare
https://ocw.mit.edu/

21M. 380 Music and Technology: Recording Techniques and Audio Production Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

