MITOCW | 21M.383 S23 Lecture 23 Apr 12.mp4

[SQUEAKING]
[RUSTLING]

[CLICKING]

MICHAEL SCOTT ASATO CUTHBERT: Today, we're going to do
two really important things that | really want to get through
today, and the first one involves the final project for the class. So
what I'm going to ask you to do is to take a minute, and after |
tell you what you're going to be doing, find a partner. If we're not
and even number, you can do one group of three. But | prefer
groups of two have tended to work a lot better, that you're going
to be willing to work on a project starting next week and start

thinking about what you would like to do.

It can be anything related to music theory and analysis in the
symbolic domain, that is to say, working with notes and scores,
not primarily working with audio or things like that. Would you
want to do that, take Eran Egozy's amazing classes where you can
do great projects on audio. And it can be a research type

problem. You can try to solve a research problem. It can be more
of a business development and entrepreneurship type problem,
trying to build a product that does something interesting with

music theory, or it can be a creative project.

I mentioned at the beginning of the semester, but | want to say it
again, the only restriction besides primarily symbolically based is
that, if you are doing a creative project, | don't want it to be based
on deep learning Al. And the reason for that is as a safety for y'all.
I've allowed it in the past, and it hasn't worked very well. And we
will do a lecture on Al later on, or a topic on Al, and then I'll be
able to explain a little bit more on what the constraint that tends

to make those projects not work very well.

So has anybody already been thinking over the course of the
semester of something that you're interested in? I'm not going to
ask you to say it, but I'm just curious. Who's been thinking a little
bit, a little bit, a little bit? OK, so some over here. So let's take 10
minutes, five minutes to find somebody that you'd like to work

with. So let's all stand up.

AUDIENCE:

MICHAEL SCOTT ASATO CUTHBERT: What's that? 70/30 toward
doing something new. Yeah, yeah, something like that. Some
percentage, some mixture of some parts of what they were
trying to do really was about, hey, this is something humans do.
Let's see if it can computer can do it. And then there was some
moments, like the one with the algorithmic pudding of claps and
hitting the violins and stuff like that at different points, which

was a little bit more computery.

OK we'll get to-- no, actually, your computers are mostly closed.
So let me just remind us a little bit of the partitive topic for the
week and talk about some of the things. Yes, yes, it's down.
Thank you. Just shout when you get that. | did remember to turn
the signal back on, but yep. Thank you. So we're going to talk
about some of the other things that we were talking about last
class with algorithmic composition. So first off, who now has been
able to access the ILLIAC suite and recording? OK, great, super.

So we're in a better position there.

We talked about whether or not the ILLIAC suite was more written
to create music that sounded like a human, or whether it was
created to do something very new. And what did we come to this

consensus? Anyone want to throw that out? Or what did you--

30 towards seeing something new?

We also talked about Markov chains in the last class, and we'll get
a little bit later on into some of the more sophisticated statistical
learning that people are doing today with Al learning. But a lot of
it is very, very similar. It's just a lot faster, a lot bigger than
things. But | want to talk about some things, and we'll to get to

that later. Pretend | didn't show that.

So there's two ways that we can distinguish algorithmic
composition. One of them is whether it's deterministic or if it has
a random chance in it, whether or not every time you play the
piece or run the piece, it will be a different piece or it will be the

same.

So | want to start by giving-- I'm going to go pretty egotistically
with two pieces that I've written. The first one is not even really a
piece, but it's kind of a little demonstration. It starts with a demo
that you might have seen in a science class or physics class,
where all the balls are moving at different lengths, but they do

some interesting optical illusion effects at various times. ASMR.

AUDIENCE: Is there supposed to be music in the background?

MICHAEL SCOTT ASATO CUTHBERT: No, no music yet. OK, so |
thought, what if there was a musical equivalent of this? What if
we could write a computer program that had 12 lines, or eight
lines, or something like that, that all started in phase, and then
slowly got out of phase, and came back together like the

pendulum? And so this is a little bit what | came up with.

[MUSICAL NOTES]

OK, I can't even follow my own score properly. So what's that?

AUDIENCE: With the double dotted 16th--

MICHAEL SCOTT ASATO CUTHBERT: 16th rest, yeah, yeah. So
sometimes when you're making an algorithmic composition,
maybe you want to think a little bit about the notation, or maybe
even better just to hear it without seeing the notation at all. So
one of the questions is, if the computer is just setting it up so
that each note comes in at a slightly different time from the
previous one, what kinds of things does the composer have for

her, or his or their creativity? Yeah, go ahead Jason.

AUDIENCE: Which notes, which pitches show up?

MICHAEL SCOTT ASATO CUTHBERT: So pitching which pitches
show up. Good, good. Cause that could, in fact-- let me do it.
Here is with, instead of using-- | think | used eight notes out of

the octave. Here is all 12 notes.

[MUSICAL NOTES]

And that sounds a little bit more familiar and maybe a little bit
closer. Why might | not have wanted to use this as my main

piece?

[MUSICAL NOTES]

It has something to do with the duration of the piece for me, that
it ended up being a little bit too long. So yeah, definitely what

notes we use.

[MUSICAL NOTES]

We can even go to weird things that a human can't usually play

on a piano.

[MUSICAL NOTES]

So this is 19 tone division of the octave. Let's you use a few more

notes per octave.

[MUSICAL NOTES]

Oh, blanking. It stops the music. Good. Yeah.

AUDIENCE: How do you go to 19?7 | would think it would be 24 or something?

MICHAEL SCOTT ASATO CUTHBERT: Yeah. Sorry, it's a little
digression, but it's kind of cool if anybody's interested in it. A 19
tone division of the octave has two pretty cool properties. One is
that it has major and minor triads that are very, very close to
acoustically-- or major and minor thirds very close to acoustically
correct, while also having perfect fourths and perfect fifths are

pretty good. So that's one reason.

The other reason for it is a lot of 19 tone piano-- a lot of 19 tone
music is written for two piano duets where you keep the five
black keys the same between each of the pianos, and then you
retune the white keys so that you have a separate note for each

of them.

Is that right? 5, 7, 7, 7, 14, and 57 Yeah. | can't remember. It's
been a long time since | wrote for 19 tone piano. They don't like
tuning our pianos for that very much. But yeah, so it makes it a
little bit more human there. Other choices you could do?
Instruments. You could do how long it goes, whether it's going to
be slower, faster. So these are some things we can do. So then
we'll get into non-deterministic things. And so let's code one up
first. So go and grab it before | get to particular pieces that are

like that.

So let's try some of the things that we might do and see how
aesthetically interesting it is. Oops. Where'd that go? Is that over
here? OK, gotta look, move this over as much as | can. OK, good.
Great, so what's the module you hope I've unlocked? It's not part
of Music21. It's part of Python, in order to do non-deterministic

composition.

AUDIENCE: Random.

MICHAEL SCOTT ASATO CUTHBERT: Random. Great, so let's
import random. And for now, let's just import everything from
Music21. Yep, that's good. You can see that. Good. Who has
worked with the random module before? No? There's basically

everybody. You know that random dot random gives you--

AUDIENCE:

MICHAEL SCOTT ASATO CUTHBERT: Between 0 and 1, yep. Oh,

shoot. No, that's not the same as-- | might have mistyped. | have

it here, and it says it should be 0.23. Good, good, good. We all
know that random-- so in a lot of languages, of course, you'll do,
in order to get between 0 and 100, say, you would just multiply
by 100. Oh, we did pretty well on that. Played the lottery today.
You just multiply by 100. Python also has this randint from 1 to
100.

Between 0 and 1.

And this is one of the older modules in Python. So it has a little bit
of inconsistency with the rest of Python, in that, well, if | do this
three times on average, | should be able to see the inconsistency
that it includes the final number. So if you do range 1 to 100 in
Python, your last one will be 99 in most languages. But this one
will include that. Really useful-- this might be all review for
somebody-- is that you can do random choice. So if you have a
list of things or any other algorithm, you can randomly choose

one from that.

And you can do a weighed choice in this, simply by putting in
something-- oops, | hit the wrong key-- putting in something a lot
of times. Probably, if you're going to do this 10,000 by 10,000,
there's other more efficient algorithms you can do for this.
Questions on randomness outside of music? By the way, there's a
way that you can set it up so that it's random at first, but then
you can reconstruct your randomness by doing what's called a
deterministic seed, which I'll often do when I'm writing
compositions, so that if there's something | really, really like, | can

reconstruct up until the point | didn't like it.

So let's write, first off, what we call a random walk composition.
So we're just going to start by doing something pretty stupid and
try to make it better. So we're going to randomly walk around the
scale. We'll start. Let's create something that's going to be a
useful, helpful function, which I'll call it Multishow. You can skip
the annotations while you're doing this. So what this does is just
going to take in a stream and show it as both an image and MIDI.
Bach. We'll just do our favorite Bach piece just to demo. BWV

66.6, multishow, Bach.

This | find helpful for anytime I'm working with something. It
always takes a lot longer when I'm projecting and the first time,
but you get the score and then below. That never looks right on

the video. Oops.

[MUSIC PLAYING]

Yep, that's the piece we know. So that's just a useful, helpful
function. So one of the parts of pitches that | find really helpful for
not being completely random here is this thing that would have
been really helpful on that problem set where you had to
determine the number of lines, the generic intervals between
notes, if you remember that. That's something called diatonic
note number, or diatonic note num. And this is a concept that |
was really, really surprised. | was like, somebody must have

named this, and it didn't seem to have a name before.

It's simply, just like MIDI has-- | don't think | went over this in
class, right? No, | don't think so-- that C4, middle C, is arbitrarily
assigned to MIDI number 60, arbitrarily assigned middle C to
diatonic note number-- that's MIDI 60-- 29. Neither of these are
completely arbitrary. There's a reason for them. And the notion is
that all. Cs, C sharps, et cetera, have diatonic note num 29. So C
sharp, and that just tells you-- C double sharp, yep, so on, C flat.

Great.

And so this is helpful for writing diatonic music, that you can just
manipulate the diatonic note number of a note and you don't
have to worry making it sound a little bit better or something. We
should have a pentatonic note number, also, because that makes
it even better to do something. So what I'm going to do is-- and
then we can just do n dot pitch, dot diatonic note num, plus

equals 4, and move things around that way.

AUDIENCE:

If you haven't seen it yet, one of the things in Music21 that's not
so good is that you'll often need to copy things, so we'll get to
that in just a little bit. But I'm going to import, copy. And if you've
never used this copy n-- oops. Copy is a module. Copy dot copy.
So | did turn ninto a g, and so now it's a g. There's two things.
Who has used the copy module in Python before? No, not too
many. OK, good. So because for the most part, you might just
want to just create another note if you wanted to do that. Don't

need to type that. But you can also copy an existing one.

And what you'll use much more is something called deep copy.
And the difference, you can see that copying the note gives you a
note that's g. Deep copying gives it a note that's g. The difference
is that, well, here. Easier to show than tell. And c is going to be
the copy of n, and we'll say dc is the d-- my computer just froze.

There we go. dc is the deep copy of n.

The difference is, so here, we'll just make sure that they're all
here, they're all, yep, three notes. Difference is if we take n's
pitch diatonic note num and go up 4 more, that the copy of n also
changes, whereas the deep copy doesn't change. And so what
some people might think of this as, you end up working with
arrays in a lot of other languages and stuff that copying an array,
you still have references to the internal pointers. So anything that
is itself an object, like n.pitch and nc.pitch will still be the same

under a shallow or normal copy.

But with a deep copy, they're different. Deep copies, pitch. So
you'll find when you're manipulating things and you get to a
particular point in the score, and now you want to add something
else that's a manipulation of what came before, you'll want to
make a deep copy of it beforehand. Does that make sense? Cool?

Any questions? Yeah.

What did you show in the last part? It's like the pitch is going to
be different by definition?

MICHAEL SCOTT ASATO CUTHBERT: Oh, sure, sure. | think it's a
little bit hard because this is this part here. So when you make a

shallow copy and you change some nested structure within

there, like a pitch or a duration, it will not be-- they're all shared.

So what you do is think of it as-- | don't know. What's something
else that's not so? So n is a note and n has-- | wish | had set this
before. ID equals note, and dot pitch equals some of a pitch dot
pitch object. And dot duration, let's say, dur is some kind of

duration object.

AUDIENCE:

MICHAEL SCOTT ASATO CUTHBERT: No, because you're
referencing the same object in point. So when you say n dot
pitch, it's actually thinking in the computer, oh, that is the
complex object being stored at some random memory location

somewhere.

AUDIENCE:

MICHAEL SCOTT ASATO CUTHBERT: So it's still pointing to the
same label. Yeah, so exactly. For people who know that kind of
terminology, it's pointing to the same label, whereas this one
goes to the label, and copies everything and makes a new
pointer. So that ends up being pretty important. And if anybody
wants to make their final project making Music21 faster, you
could find places that we deep copy more than we have to

because that's the slowest thing in what's happening.

When you do a shallow copy and c will be nc's ID equals n's ID,
and nc's pitch equals nc, n's pitch. And so since ID is just a string
or something like that, once it's copied over, they have no
connection to each other. But since we've copied the pitch over,
and it's a complex object when you change something on this,
when this manipulates, this manipulates. So with a deep copy,
what you do is dc dot pitch. Hold that. First let's do a deep copy of
the pitch. And so you keep going down and you make sure that

nothing is connected between the two.

So this also is slightly misleading, right? Because there's nothing
that actually says nc.pitch pitch is equal to n.pitch. In fact, that's
the whole point. If it did, that would be an example of deep copy,

right?

OK, so it's still pointing to the label.

AUDIENCE:

MICHAEL SCOTT ASATO CUTHBERT: Sorry, thank you. That's why
| shouldn't do that. Thank you. Please, always just do that. |
appreciate that. Big help. And we'll just say we're going to
choose between going down a step, going up a step, and so on.

So our first note will always be--

AUDIENCE:

MICHAEL SCOTT ASATO CUTHBERT: C, C4. And now let's multi-

Too much of an aside. Back to some music. Great. So we'll get
back to our random walk composition once | find where this went.
Yeah, here we go. Great, so we're going to be copying things
pretty soon. But first, let's just create. We'll create a generic
stream, which we rarely do nowadays. Maybe we want to make it
a part or something. But generic stream will work pretty well. And
let's just say for i in range 30, let's just append 30 random notes.
Or no, let's do this. No, let's start on ¢, current. Well, we'll just call

it cur. That's the current diatonic note number.

When we're coding fast, we don't need my obsession with long
variables. So we'll say note equals note dot note, and pitch
diatonic note num equals the current one. And that works pretty

well. Stream, append.

It's called cur now.

show that. Pretty boring piece, but here we go. Oh, this one went

down this time.

[MUSICAL NOTES]

Et cetera. Anybody's more interesting? Anyone's go up? Anyone's
just hit Play? Yeah. So not a great piece. The easiest thing | could
do to make it a little bit better, by the way, would be to make my
number of notes | attach be-- what do you call it? A multiple of 4.
But OK. So let's move on to do some things that are a little bit
more interesting. Maybe we could do something like this. I'm
going to copy and paste a lot on this, so we can go ahead and just

tweak what we're doing.

You, in fact, probably don't even need to copy and paste. You can
just keep tweaking the same cell forever. So what's something we
should do to make this a little bit more interesting? Rhythm.
Great. So let's have each note and dot duration, dot something.

What do we want to do?

AUDIENCE: I'm just thinking about something for-- it wasn't for a duration.

MICHAEL SCOTT ASATO CUTHBERT: OK, then hold it when we
get-- let's finish the duration, and then yeah, then we'll get to it.

John?

AUDIENCE: A choice for 4s to choose a quarter, a half, eighth, n for the

duration.

MICHAEL SCOTT ASATO CUTHBERT: Great. So random choice.
While | start typing this out, what goes after the n dot duration
dot quarter, half, eighth? Anyone remember what this is called?
It's unhelpful. It's called the type. The type quarter length, we
would have to say we could put it in as one, two, half. Yep. Let's

see if that makes it a little bit nicer.

[MUSICAL NOTES]

It's actually already nicer. Usually, this doesn't help as much.

[MUSICAL NOTES]

Next improvement I'm just going to keep going on this. Yeah.

AUDIENCE: You can make it [INAUDIBLE].

MICHAEL SCOTT ASATO CUTHBERT: What's that?

AUDIENCE: You can make it go up a third.

MICHAEL SCOTT ASATO CUTHBERT: Cool. Yep, it can go up a
third or down a third. Now, do we want to make it a weighed
probability at all? So how much more do we want it? Up a third is
minus 2, because we're thinking in computer think, not in music
theory think. So that would be unweighed. And how do we want

to weigh this to make it feel more musical?

AUDIENCE: Higher weight on stepwise motion?

MICHAEL SCOTT ASATO CUTHBERT: Higher weight on stepwise.
Negative 1, negative 1, 1, 1. OK, let's try that.

[MUSICAL NOTES]

Hey, there's our first step.

[MUSICAL NOTES]

Not so good. OK, so we still need some things. That's definite

improvement. Thank you. Another thing to improve. Yeah, Jason.

AUDIENCE: Decrease the weight on staying on the same note?

MICHAEL SCOTT ASATO CUTHBERT: Decrease the weight on
staying on the same note. OK, so what we can do is the easiest
way when you're programming really fast in front of a class-- do
that-- is cut and paste. Don't do this in your actual things you
turn in. But cut and paste and just delete that 0. Is that good?
Yeah, it already looks a little bit better. Next, let's do another

improvement on rhythm. Yeah.

AUDIENCE: It's more likely you have a note starting on beat one.

MICHAEL SCOTT ASATO CUTHBERT: Good. So we want to try to
weigh it somehow so that we have notes that start on the
downbeat more. Talk with your neighbor on how you might

implement that.

[INTERPOSING VOICES]

MICHAEL SCOTT ASATO CUTHBERT: OK, let's come back
together. Anybody?

[INTERPOSING VOICES]

MICHAEL SCOTT ASATO CUTHBERT: OK. Let's jump in, well, and
we'll try to program it together because we'll do this in class.
Somebody | haven't heard from yet want to give a suggestion

who hasn't unspoken? Yeah?

AUDIENCE: We can try to keep track of an offset, and then based on that

offset, have a different--

MICHAEL SCOTT ASATO CUTHBERT: So have a different
probability based on the offset. What offsets in currently with
the default time signature 4/4? Why do we make that default

very hegemonic. But what offsets represent the downbeat?

AUDIENCE: Zero.

MICHAEL SCOTT ASATO CUTHBERT: Zero definitely represents a
downbeat. What other offsets? So have we been creating
measures, by the way. First off, let's look at that. So we've kind
of taking advantage of Music21 or something creating measures
for us. So our offsets, we start with zero, and then we're just

appending. So what's our next downbeat?

AUDIENCE:

MICHAEL SCOTT ASATO CUTHBERT: Good. And somebody else,

what's our general formula we're going to find for downbeat?

AUDIENCE:

MICHAEL SCOTT ASATO CUTHBERT: Yeah, we could check if the
offset is mod 4 is 0. So we'll get to, before we do that, so let's

say, what's our current offset. So one of the things we can do is

we can keep track of our current offset. Now, we're going to wish

we had-- 0.0. Now we're going to wish we had done this as
quarter lengths. So I'm going to rewrite this as quarter length.
Why? Because it's easier to add quarter lengths than it is types.

So 1, 2, 0.5. And we'll just say gl equals random.choice.

AUDIENCE:

MICHAEL SCOTT ASATO CUTHBERT: And if it's not on the

downbeat?

AUDIENCE:

Four.

0 mod 47?

So what we can do is, well, now, I'm just going to make sure that |
still have a current thing and cur_offset plus equals qgl. So |
haven't done anything to adjust our probability yet. Just making
sure that this works. Yep, it it's still generating. So how can we
use this to implement the great suggestion that we want to have
things that fit on the downbeat more often do something else? So
we'll say, is on downbeat equals cur_offset present zero. You got
to say, bools on. Here we say true. This is the easiest way. If cur

offset 0 equals 0, else false.

You can do it. You can realize that Boolean expression will be
reduce itself, but | like to be explicit when I'm thinking. So now we
know if something is on the downbeat. How do we want to do it
differently? Do you need to brainstorm? Thanks, Adam. | want to
hear from some more voices, even though you're doing great.

Vanessa, yeah.

On the downbeat, you can use the formally chosen borderline

pitch, and then--

You leave it as what it was before.

MICHAEL SCOTT ASATO CUTHBERT: You leave it as what it was
before. Let's try that. Oh, yeah. So we have a last gl, so we'll
define gl outside of here, will be pretty Pythonic, equals-- we'll
say our last one is 1. We're actually not going to. Because we
will always start on the downbeat, gl will be defined. But let's do
good programming techniques and define it outside. Good. So if
is on, if not is on downbeat. Let's see if that-- otherwise, we're
just going to stay on whatever we were on before. Let's see.

Think it through first. Did | get something wrong?

AUDIENCE: gl will have a not defined error. Oh, sorry.

MICHAEL SCOTT ASATO CUTHBERT: Yep, that's what we do.
That's why | was talking about defining it. Good catch, though.
Always don't know crashed 787 because of not defined errors.
That's a famous story. OK, so let's make sure that we're not
going to end up permanently syncopated or something. We start
on the downbeat, and then we choose between-- maybe | should
put these in some of a logical order 2, 1, 0.5. We randomly
choose between half note, quarter note, and eighth note, and
we're on the downbeat, and so we're going to stay on that for a

bit. We'll always end up back on a downbeat at some point.

We start on a downbeat. We choose 2, 1, 0.5 in this particular
piece. Who votes yes? Who votes we might be permanently

syncopated? Spend more time reading code than writing code.

AUDIENCE: It looks like we might, yeah, because it always switches the

quarter length if we're not on the downbeat.

MICHAEL SCOTT ASATO CUTHBERT: Oh, did | do that wrong? Do
we want to keep it-- we wanted to-- do | have a misplaced not?
So that's what we wanted a little bit. If we're on the downbeat,
we can change to a new rhythm. If we're not, we can't. | think

let's run. Let's generate this.

AUDIENCE: [INAUDIBLE].

MICHAEL SCOTT ASATO CUTHBERT: Yeah, so what's the

consequence of this? Somebody else.

[MUSICAL NOTES]

MICHAEL SCOTT ASATO CUTHBERT: Yep.

AUDIENCE: It's the same type of notes that are changing.

MICHAEL SCOTT ASATO CUTHBERT: It's the same type of notes
every measure. You know what? I'm going to change that over.
Oh, no, no, we can't determine the length of the piece. So we
might have that. Yeah, every measure will always have the
same type of thing. This is kind of nice for-- a lot of my junior
high etude books were like this, that you only switched rhythms.
But maybe what's one way that we can switch a little bit better,
more often? We could just say, we should rename our variables,
but maybe this will feel much more unified. We'll just do it on

every two notes.

[MUSICAL NOTES]

OK, that's enough. That's already becoming more unified. So what
are some things that we could hack into this? We're done for a
little bit, but what are some things that we can make it sound a

little bit more human?

AUDIENCE: Harmony.

MICHAEL SCOTT ASATO CUTHBERT: We can add harmony. Good.
We could add random or appropriate. Probably more

appropriate. Yeah, Jason.

AUDIENCE: We could allow it to occasionally break these rules by, well,

probably by random chance.

MICHAEL SCOTT ASATO CUTHBERT: So certain random chance
that we break the rules. Yeah, one of the things here, I'm not
going to do this. But | gave a particular random chance that
something might go up an octave in another time when | did
this, and there was some danger in allowing that. This is a
particular problem with MuseScore, that if you overflow 256, it
jumps. It's unsigned, which is kind of cool that the world of
notation wraps around. But yeah. So | obviously was allowing
this one random-- seven is an octave if you're adding to it to
happen a little too often. So that can be a danger, but it

happens. Thanks for having that.

Yeah, so those are some of the other things you can do. Maybe
we want to sound a little less-- I'm going to start doing this. | just
need to not make it full screen. You can make it a little bit less
human and make it do these weird microtones, or not less human,
but less traditional. And where'd that go? Here we can hear it.

These, unfortunately--

[MUSICAL NOTES]

So there are ways that you can do some things that allow you to
be more experimental if you want, or less experimental. Great. So
we'll keep playing with that. What you'll probably realize, one of
the things we're building up to, so you're given a problem set 7.8,
as | said. It's not in 7/8 time. That would be too lopsided. But what
itis, is it gives you some work with scales and with Roman
numerals. And then there's two parts for you to do an open ended
thing. One is, we're going to be asking you, in the first half to
write a Roman numeral analyzer just for triads in major. And it's

just going to be for block chords.

I'll give you three notes. You tell me what Roman numeral it is. If
you're a little bit behind-- sorry. If it's been a while since you've
done Roman numeral analysis or you feel a little bit weak on it,
collaborate. Talk with other people on that. Make sure that you're
really clear what a diminished triad and all that things is. So grab
somebody before you leave the room. And then there's a little
open ended thing where | just ask you, do something a little bit
more. Maybe you have something that works in minor. Maybe you

have it do it seventh chords.

Maybe you work in jazz and popular music, and you think Roman
numerals, oh, that's only for classical music. I'm going to have it
do chord symbols, CDM, and things like that instead. So whatever
you want, there'll be just a small part of it. | should have it open.
In fact, | think I-- no, | only have it with all the answers open.
Never mind. And then, the last part is, | want an algorithmic
composition that you like. It can be multi-part. It could be single
part if it's interesting. It could be with chords, without chords, but
just something where you've done some of interesting music

theory.

I'll say that what we've given here is the quintessential D minus
so far. Try to go better than, maybe it's a D. Actually, but at this
point, we're getting a little bit better. Don't spend the entire
semester on it. This is not meant to be the gigantic project that
you take forever on. The only restriction I'm giving is that I'd like
it to be about a minute long, not two minutes long, not 12 minutes
long, because | have to-- if everybody turns in a 10 minute
composition, then I'll be listening to algorithmic compositions

forever. So if you can do that, that's going to be that main part.

Any questions about what we did with playing around with
algorithmic compositions today? Then I'm going to be a little
egotistical for a second and talk about one of my first algorithmic
compositions that, at some point, people were performing. And
it's a piece for this group called the Bang on a Can All-Stars, which
some of you might recognize the clarinetist is Evan Ziporyn. So
another professor who's here, who does a lot of things. And it was

based on Markov chains.

So the notion of what | wanted was some kind of a melody that
was a little bit boring-- not boring, but just undistinguished.
Except it had these weird bumps in it, some things that sounded a
little bit weird, like this opening tritone, and then some of these
weird gestures. And so some things that you'd hear enough
times, you're like, OK, | know that that's what the piece is about.
And try to see if this is-- | can't remember when it's from. 2005. It
was a little bit pre-deep learning and things, so just probability
theory, whether or not the Markov chain would do something

interesting things with this.

And then one of the things | really wanted was someplace like an
old record player that would get stuck in a loop and need to be
jumped out of it. So | have a few places where the same thing
happens over, and over, and over again. If you're thinking about
what we were talking about at the end of last class about the
probability of B, given A, the next note, or we could say n2, given
nl, this is-- what order or Markov chain are we talking about
here? First order, based on one previous note. | used a bunch of
different orders in this piece, depending on how random | wanted

it to be.

| wanted that, when you got to that note A, that the probability,
given A, was very high that you would do another A. So | weighed
the probability. So the probability of an A, given an A, was, | don't
know, something like 0.9 or something. So the computer would
get stuck in this particular groove at some points. And we'll see.
What | would do at some points is just keep the melody, just keep
the notes, and let the rhythms be out. But if this is treble clef,

that's an opening gesture of B, F, comes back a lot B, F.

[MUSICAL NOTES]

You'll hear that a lot, and then getting stuck in that a groove
again. Da, da, da. You'll hear that. And what | did was, back in the
old days, | just had it generate a whole bunch of melodies, and |
kept the ones | wanted. So | wanted to do my computer type of
thing. One last little thing is that | had this sort of progression
that begins one beat per second, so 60 BPM, then moves. There
was a section at 1.5 beats per second, 2, 3, 4, and then the final
note is a dissonance that vibrates five beats per second. So that's

kind of the little Easter egg in the piece.

And then | took the 1.5 beats per second and moved it, because
that's what composers do. When the piece was premiered-- they'll
never be happy with me at the printing office again-- | gave every
person in the audience a different set of program notes that
began by saying the opening of the piece is rather
straightforward. And then | wrote about 10 pages worth of
program notes, and everyone got a Markov chain of the program
notes. So it has something. Kind of looks like something, and then
it ended always with a hint of order, no matter what they had. So
I'm just going to be indulgent and play a little bit of something |

wrote a while back.

[MUSIC PLAYING]

And here's where | let the computer start taking over.

[MUSIC PLAYING]

| think | told the computer to multiply the intervals by 2 for more

leapy.

[MUSIC PLAYING]

This is completely Markov chained here.

[MUSIC PLAYING]

You can kind of hear where it's stuck again.

[MUSIC PLAYING]

Any time you see a two measure repeat, the timing didn't work.

[MUSIC PLAYING]

That's 2002. Well, thanks, everybody. You don't need to write that
much. Please don't write that much for your algorithmic
composition, but feel free to have a mixture of your own
personality and your own desires, and let the computer do some

things that kind of inspires you.

