
	

	
	

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

Assignment	 2:	Wave 	Files

Overview
In 	lecture, 	we 	learned 	about 	audio 	data 	stored in 	WAVE 	files, 	how 	to 	read 	them, 	how 	to 	play

them in full, and how to play them as short snippets.

Your assignment is to flesh out the basic interfaces that we developed in 	class 	with 	more

features. Then, put	 these to good use by creating a mini performance system.

Note that the assignment code contains superstition.mp3 but not superstition.wav (so the

download	 would	 not be too	 large). If	 you want	 to play with the same code	 as we	 saw in Lecture,

you should first convert the mp3 to a	 wave file using Audacity.

Part 0
Find some	 audio - a	 song (or	 two)	 that	 you want	 to play with - and convert	 it	 to a WAV file with
Audacity.

Part 1
Add	 shuttle controls to	 WaveGenerator.	 Allow the user to:
• Pause	 and Play the audio playback. A toggle function is also handy to allow toggling between

these two states. When paused, the WaveGenerator should still generate audio – but that
audio should be	 silence!

• Reset back to the	 beginning	 of the	 file. On your music player, this is usually connected to the
"Reset Button."

Test these functions	 by hooking them up to key presses.

Part 2
Create some regions in your WAVE file using Sonic Visualizer:
• See	 details on how to do this in LectureNotes2.pdf.
• Export the regions layer and call it <name>_regions.txt

Write the code to read this text file so that you can easily	 create some WaveBuffers from the
data file:
• Make a class AudioRegion that	 holds the information for	 one Region. It	 should have a

name, a	 start frame, and a	 length in 	frames (no audio data). This is just a	 simple data
container.

• Make a class SongRegions that	 holds a collection of	 AudioRegions and knows how to
create that collection by	 reading and parsing the _regions.txt file.

• Finally, create	 the function make_wave_buffers that	 returns a python dictionary of
WaveBuffers from the SongRegions.	 The dictionary should be of the format:

{
name1: buffer1,

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	

	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 		
	

name2: buffer2
:
}
:

where nameN is a 	string 	and bufferN is a WaveBuffer instance. Now, you can easily play back
any of your buffers by retrieving a buffer by name, creating a WaveGenerator, and handing it off
to the Mixer class.

Test your code by triggering some WaveGenerators based	 on	 key_down events.

Part 3
Add	 a looping option	 to	 WaveGenerator.generate().	 If 	looping is 	enabled, 	when the generator
gets to the	 end of the	 audio data, it will automatically	 loop back	 to the	 beginning.
WaveGenerator’s 	constructor 	should 	take 	another 	argument:

class WaveGenerator(object):
:
def __init__(self, wave_source, loop=False):
:

But this means that if looping is on, the generator will never stop	 producing audio, so add a
function to stop the generator:

def release(self):
:
...
:

This release function should work even if	 looping is not	 turned on. The difference between
release() and pause() is 	that release() terminates the generator	 by causing the
continue_flag to be False.

Test release() by hooking into keyboard keys.	 When a key is pressed, it 	should 	start a
WaveGenerator.	 When that same key is released, it should release() that	 same
WaveGenerator.	 Use on_key_up() and on_key_down().

When you author regions for	 looping in 	Sonic 	Visualizer,	you’ll 	need 	to 	pay 	careful 	attention 	to
the start	 and end of the	 region. Use the built-in 	playback 	looping 	ability 	to 	test 	out 	what 	the
region sounds like when it loops.

Part 4
So far, all of our audio has played back at the	 intended speed (ie, the	 speed that it was
recorded). Let's mess with that	 as well!	 Create a new generator	 called SpeedModulator that	
doesn’t create its	 own audio, but knows	 how to modulate audio from another generator.
SpeedModulator looks 	like 	this:

class SpeedModulator(object):
:
def __init__(self, generator, speed = 1.0):
:

...
:
def set_speed(self, speed):
:

...
:
def generate(self, num_frames, num_channels) :
:

...
:

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	

	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
 	 	 	
 	 	 	
 	
 	 	
 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

When SpeedModulator is 	asked 	for 	audio 	data, 	it first	 asks its own internal generator for audio
data, then stretches or	 squashes that	 data,	and finally returns that modified	 audio	 data. You	 can	
also adjust the	 speed variable on-the-fly with set_speed().

Implementing 	speed 	change 	requires 	resampling 	the 	audio 	using 	interpolation. We discussed
how interpolation	 works in	 class, but implementing it is a job	 for you. You will want to use the
function np.interp(). See	 LectureNotes2.pdf for	 more discussion as well.

Careful about interpolation	 using stereo	 audio! You	 must de-interleave, 	change 	speeds, 	and
then re-interleave.

Part 5
Now, pull it all together to make a	 mini-performance system that	 combines some or all of the
systems	 you have built so	 far:

• Full song playback
• Short buffer playback
• Looping
• Speed changes
• Note synthesis

Find song / audio content you like, create	 mappings to trigger that content in 	different 	ways,	
and if you like, add mappings for synth note	 playback on top. You can build on the	 work you did
in 	Assignment 	1, 	or 	start 	with 	something 	else.

Some	 ideas:
• Drum loops are fun. Find audio of drums and	 loop	 those
• Short audio buffers that	 only contain one note or chord	 can be triggered as notes. If you

carefully	 alter their speed, you can get a variety	 of different pitches	 as	 well.
• Loop a long	 buffer (say	 4 or 8 beats) and trigger short buffer on	 top	 of that. This works

well if the music 	of 	the 	long buffer acts as background and the	 short buffers can act as
melody or foreground music.

• Identify 	the 	chords / 	harmonic 	progression 	of 	some 	areas 	of a 	song 	and 	make 	note
mappings that match the harmonies and can be played on top of those areas.

Write
up
a
short
description
of
the
how
to
control
your
system
in
a
README
file.

Create
a
quick
/
rough	
/
unedited	
video	
of
your
performance.
It
doesn’t
need	
to	
be
long:
30-60	

seconds	i
s	
fine.
You
can
either
submit
the
video
file
or
(better)
upload
it
to
YouTube/Vimeo
and

provide
a
link
in	
the
README.
Remember
to	
also
include
the
audio
itself:	wave
	file
	or
	mp3
	files.

Finally...

Please	
have	
good
comments
in
your
code.
When
submitting
your
solution,
submit
a	
zip
file	
that

has
all
the
necessary
files.
For
example,
if
you
used
other
files
that
I
provided
(like	
core.py),
re-
provide
those
files
back
to	
me
in	
your
submission.

MIT OpenCourseWare
https://ocw.mit.edu

21M.385 Interactive Music Systems
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu

