
	

	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Assignment	 7:	Guitar	Hero

Overview
In 	this 	assignment, 	you 	will	make a 	simplified 	Guitar 	Hero game, focusing	 on the	 core	 game	
mechanic (without the background graphics / characters, etc...). The main simplification is that
we will use the computer keyboard as input device instead of a plastic	 guitar. Playing a	 note	 is
therefore simply a matter	 of	 pressing the right	 keyboard key at	 the right	 time, as opposed to
holding down	 the correct fret button(s),	and 	strumming 	at 	the 	right 	time.

Since	 this assignment is fairly	 involved, you are	 advised to start early.

Specification

Hit a key (‘p’) to start/toggle the song playing – this will start	 both the background audio and the
guitar-solo audio.

Visual Display
As the song plays, Gems (visual display	 of notes which you will author	 to correspond to some
notes of the guitar solo) will start “falling down” from the top of the screen and approach the

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	 	

	
	 	 	 	 		

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	

	
	
	

	

NowBar,	located 	towards 	the 	bottom 	of 	the 	screen.	 Each Gem belongs to one of 5	 Lanes. There
are	 also 5	 Buttons (visual indicators), attached to the	 NowBar. When a Gem reaches the
NowBar,	it 	will 	intersect 	with 	the 	corresponding 	Button 	of 	the 	Lane.

In 	addition 	to 	Gems, BarLines also “fall down” from the	 top of the	 screen. Each BarLine	
represents the beginning of	 a measure / bar	 in the music.

A	 Score	 Display in 	the 	top 	corner 	shows 	the 	player’s 	score.

Player	 Actions
5	 keyboard keys are	 mapped to activate	 the	 five	 Buttons.

The player attempts to	 “hit” the Gems by pressing the keyboard key	 associated with the Lane of
a	 Gem when the	 Gem intersects the	 NowBar. There are three possible outcomes:

•	 Hit:	The 	Gem 	was 	successfully 	hit. 	More 	specifically,	 a key	 was pressed when a Gem was
within 	a time window centered on	 the NowBar and	 the key’s Lane matches the Gem’s
Lane. The window	 is called the Slop Window and is +/- 100ms (ie, a	 total of 200ms in
width)

•	 Miss:	 There are two miss conditions
o	 Temporal Miss:	 A	 key was pressed,	 but no	 Gem was within the Slop Window.
o	 Lane	 Miss:	 A	 key was pressed	 with a Gem inside 	the 	Slop 	Window, 	but in 	the

wrong Lane. Any Gem that was Lane Missed	 is marked	 as unhittable.
•	 Pass:	A 	gem 	passed a	 point in time	 (after passing the	 NowBar) where	 it can no longer be	

hit	 (ie, it	 is past	 the Slop Window).

Game	 Reactions
A	 well-designed	 game has direct visual and	 auditory feedback to	 inform the player about what’s
going	 on and how they	 are	 doing. The	 reactions for GH are:

Button	 Press: When a key is pressed and released, the associated Button’s visual display
changes accordingly.

Hit:	The 	Gem 	shows 	that it 	was 	hit 	(for 	example,	an 	explosion,	flair,	or 	some 	other 	exciting
display). The Gem should	 then disappear or otherwise stop	 flowing down the screen to indicate
it is 	no	 longer in	 play.	 The solo audio track unmutes.	 Points are earned.

Pass:	The 	Gem 	changes 	visual	state 	to 	show 	that it 	can 	no 	longer 	be 	hit. 	The 	solo 	audio 	track
mutes.

Miss:	A 	miss sound plays to indicate a missed note. A	 Lane Miss has the same visual effect	 as a
Pass (it can no longer be	 hit).

Part 0:	 Choose	 a Song
I’ve 	put 	up a 	few 	songs 	that 	we 	used in 	the 	original	Guitar 	Hero 	game. 	These 	are 	multitrack
songs, where the main guitar part is	 split from the rest of the background	 part so	 that each	 song
consists of two	 stereo	 audio	 files. Pick a	 song.

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	

	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	 	 	

	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 		
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	
	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	
 	
 	 	 	 	

	 	 	 	 	 	 	 	 		
	 	 	

 	 	 	 	
	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	
	
	

	

	
	
	

	

Part 1:	 Annotate the Song [10 pts]
Use Sonic Visualizer to annotate the gem locations in the solo part of the song. This is similar to
what you did in Assignment 2, but you will be creating a Time Instants Layer. Each annotation is
a	 time	 value	 and a	 text label.

Hints:
•	 When the song plays in Sonic Visualizer, hit ; (semicolon) to insert a new annotation.
•	 When you play back the song, you will hear a click at each annotation.
•	 Use the Edit tool to adjust these annotation	 locations so	 that they line up	 precisely with	

the guitar	 notes.
•	 To change the text label, hit E	 to bring up the annotations window.

Use the annotation labels to specify the location and type of	 each gem. Use whatever	 format	 or	
syntax you want.

Authoring the Gem data is a bit of an	 art form. The Gem pattern	 should	 be musical and	 follow
the contours of	 the solo guitar	 line so it	 “feels right” to play it. You can choose how difficult	 you
want the Gem pattern to be.	 You do not need to have a Gem match every note of the guitar
solo. In 	the 	easy 	levels 	of 	Guitar 	Hero/Rock 	Band, 	Harmonix 	authored 	far 	fewer 	gems 	than 	guitar
notes. Only the most difficult level had	 a (mostly) 1-1	 correspondence	 between Gems and guitar
notes.

Export the gems data file with “Export Annotation Layer”.

As you	 did	 in	 Assignment 2, write code that parses this text file and store	 the	 data	 in the	 class
SongData. You can do a	 rough initial	 pass to	 validate your code. Then in Part 3, you can refine
your Gem authoring	 so it really 	feels 	right.

Use the same process to create BarLine data (i.e., an annotation on each downbeat)	 .	 You have
the option of	 using the same annotation file (so it	 will have both bar	 data gem data), or	 two
different files. In	 fact, it might be easier to	 lay down	 bar line data using the backing track.

Part 2:	 Basic Graphics and	 Audio [20 pts]
Create the graphical and audio elements of the	 game:

•	 GemDisplay:	draws a 	single 	gem
•	 ButtonDisplay:	draws a 	single 	button
•	 BeatMatchDisplay:	draws 	Gems,	BarLines,	NowBar,	 and Buttons.	 Animates the Gems

flowing down	 the screen	 (hint: create a Translate() object and	 scroll Gems	 and Barlines	
by animating trans.y).

•	 AudioControl:	plays both	 background	 and	 solo audio files.

Instantiate 	the BeatMatchDisplay and the	 AudioControl.	 The Gems and BarLines should flow
down	 the screen	 towards the NowBar as the	 song plays.

At the end	 of this part, nothing is interactive. Gems and BarLines simply flow down as	 the song
plays (and they should pause if	 you pause the song).

	 	 	 	 	 	

	 	
	

	 	 	 	 	 	

 	 	 	
	 	 	 	

 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	
	 	 	

	 	 	

 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	

	

	

	

	

	

Part 3:	 Interactive 	Elements 	and Game Logic [20 pts]
In 	this 	part, 	you 	will	finish 	the 	game 	by 	adding 	all	the 	interactive 	elements 	and 	audio/graphical	
Game Reactions.

• GemDisplay:	implement 	functions 	to 	change 	the 	Gem’s 	graphical	look 	as 	needed:
on_hit,	 on_pass,	and on_update (to help with hit	 animation).

• ButtonDisplay:	implement on_down,	and on_up,	to 	change 	graphical 	look 	when 	the
user presses a key.

• Player:	Create 	the 	game 	logic 	that 	implements 	the 	interactive 	behavior 	described in 	the
Spec. Player receives button up/down	 events from MainWidget. It figures out what to
do	 and	 calls functions on	 BeatMatchDisplay and	 AudioControl to	 make the appropriate
reactions happen. It	 also keeps track of	 score.

• BeatMatchDisplay:	implement 	the 	functions 	called 	by 	Player 	that 	affect	 visual display of
Gems and Buttons.

• AudioControl:	implement 	mute / 	unmute 	for 	the 	solo 	tracks,	and 	play 	the 	miss-sound-
effect with a	 WaveGenerator.

• Score: Show the	 score	 somewhere	 on screen.

Lastly, refine your Gem authoring	 so that it feels right and fun	 to	 play. If 	you 	are 	short 	on 	time,	
you need to not author gems for the entire song,	but 	you	 should	 do	 at least the first minute. Of
course, the more gems	 your author, the higher your score will be =)

Finally...
Provide	 a	 brief video of you playing your game	 and a README that explains how things work,
especially if you have	 added additional elements to this pset. Please	 have	 good comments in
your code. When submitting	 your solution, submit a zip file that has all the necessary	 files.

MIT OpenCourseWare
https://ocw.mit.edu

21M.385 Interactive Music Systems
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu

