22.01 Fall 2016, Problem Set 6 Solutions

November 19, 2016

Complete all the assigned problems, and do make sure to show your intermediate work.

1 Skill-Building Problems (50 points)

1. Short Answers (5 points each)

(a) Explain, using stopping power expressions and cross sections, why the energy loss due to ionization

drops off so sharply with increasing energy, while radiation loss increases linearly.
The complete form of the non-relativistic stopping power expression for any charged
particle is as follows:
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Neglecting the constant terms, this takes the following energy-dependent form:
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This implies that at lower energies, the % term completely dominates, and it drops

off very sharply with increasing energy. This is solely due to the charged particle
spending less time near each given electron, because it is moving faster. This also
relates directly to the differential cross section for energy as follows, from Yip Equa-
tion 11.15:
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At much higher energies, the ability of a particle with a given charge to ionize elec-
trons farther and farther away (at higher impact parameters) increases, but not that
quickly.
Explain the quantitative differences in stopping power of electrons as they reach relativistic speeds.
What energy cutoff do you consider relativistic, and why?
As particles reach relativistic speeds, their effective mass increases, meaning that they
will be deflected less per unit length for the same applied Coulomb force between them
and the electrons in the medium. This gives them greatly increased stopping power.
Let’s say that we choose an energy cutoff where the stopping power is increased by
no more than 5% at its peak from its non-relativistic value. Then we can graph the
following ratio as a function of [3:
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where we have used the relativistic stopping power expression from Yip, Equation
11.12. Solving for 3:
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This function was graphed as a function of 5, and its intersection with the x-axis
will reveal at what value of 3 the stopping power increases by 5% at its peak. This
value was found to be [ ~ 0.27, even over a wide range of I ranging from 5-50keV.

(¢) Consider the following electron microscope image of palladium diffusion into zirconium carbide:

AccV SpotMagn Det WD ———— 10m
100kv 30 3500x BSE 10.4 Z03 Distances

Where is the palladium in this image, and how do you know, based on your knowledge of electron
interaction mechanisms with matter? Back up your answer with a relevant quantitative estimate
of electron interactions. Using an image processing program, measure the relative brightnesses of
various types of spots in the images. Can you guess the average atomic number of each of the
spots? In other words, is brightness linearly proportional to the type of electron interaction(s)
that you are interested in?
The palladium is the white spots in the image. This was an image made with the
BSE (Back-Scattered Electron) detector, where electrons fired from the microscope
scatter directly backwards into a detector. The cross section for backscattering is as
follows: ,
aZ
Ops = 46 (11)

where a = 1barn, and 3 is defined as above.
Using the GIMP image manipulation program, regions were automatically selected



using the “Fuzzy Select Tool” to represent the brightness of bright (Pd) and dark
(ZrC) regions. These regions are shouwn in the image below:

AccV Spot Magn Det WD b 10m
100KV 3.0 3500x BSE 10.4 Z03 Distances

Using the Colors— Info— Histogram menu, the average 8-bit brightnesses of these two
regions were found to be 85.7 (bright) and 53.0 (dark), respectively. Using Zpq = 46
and Zz.c = 23, this would yield a ratio of exactly (fzidc = 4. The discrepancy between
the expected brightness ratio and the observed one is that in an electron microscope,
the user can dynamically change the brightness (offset) and contrast (multiplying
factor) of the luminosity of the entire image at once. This was done in this case to
enhance contrast in the image, making a direct cross section comparison impossible

using just image analysis.

Explain, using attenuation and stopping power, why protons are far more effective at damaging
a localized tumor. Draw any applicable range relations and/or attenuation graphs to make your
point.

Because protons are charged particles, they have a finite range in materials, due
to their stopping power becoming very large at low energies. This is because as a
proton slows down, it spends more time in the vicinity of other electrons/nuclei,
transferring more of its energy the slower it gets. Photons on the other hand are
uncharged, and only undergo exponential attenuation. This means that most of the
radiation damage by photons is done before they reach the tumor, while most of the
tonizations by protons happen inside the tumor if emitted at the correct energy. This
graph helps to explain the point:
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Courtesy of ProCure Proton Therapy Center. Used with permission.

Image: hitps://www.procure.com/Proton- Therapy-Basics/what-is-proton-therapy
Photons undergo exponential attenuation:
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while protons have a finite range defined as:
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2. Calculation Problems (10 points each)

(a) Analytically develop a graph of the range of protons in lead vs. their energy, over a range between
100keV and 100 MeV, with at least ten points on the curve. Check your answer by using SRIM
(www.srim.org) to simulate the range of protons in lead at each energy.

For this problem, we take the equation for the range of a charged particle
traveling through matter:
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Let’s redefine all the logarithm stuff as some simple function to make writing our
equations easier:
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We use the mean ionization potential of lead as 10¥Z=820eV, and we tabulate this
Sfunction F () to make it easier to deal with in the integral:
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https://www.procure.com/Proton-Therapy-Basics/what-is-proton-therapy

(Mev) E(J) B2 F(B)
F(B)
1
1.6E-13| 0.002129| 0.973908 . Y
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We use this trend line to redefine F (() :
F(B) = 0.97821n (E) + 29.802 = 0.9782 In (29.802 E) (16)

Now we substitute everything in:
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where we have used quantities in the above formulas are given in SI units as shown

’ Cons:cant Meaning Value \ Unit ‘

Me Electron mass 9.11 - 10771 kg

M Incoming ion mass 1.67-10~%7 kg

kg 23 atoms
N | Lead number density | 43 — (Wt OWTEET) _ 5 o7 027 | atoms
mole

ko Coulomb constant 8.99 - 107 N i

z Proton charge 1 —

Z Lead nuclear charge 82 —

e Electron charge 1.6-10~1% C

Now we note that the integral above would be absolutely hideous, as the integral of
E/in(E) is a special, complex function called the ’exponential integral.” We don’t want
to deal with this, and we note that F () doesn’t vary much over the full energy range.
Let’s just forget it for now, and see how we do.
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We have just re-derived the approximation for range as R «< T?. Now we can just
calculate the stopping power at one energy and scale accordingly. Using this formula,
which takes in the energy of the proton in Joules, we arrive at the following table
of data and graph, having only calculated the stopping power at 100keV and scaled
other energies accordingly:



A E C D E F G H 1 1 K L M

1 |[E(Mev) E {J) Range (m) |Range (un SRIM {um Turner {utn)

2 0.1| 1.6E-14 7.7568E-07| 0.77568 0.605 0.3 Chart Title

3 0.2| 3.26-14 3.1027E-06| 3.10272 1.2 2 1000000

4 0.5 8E-14 1.9392E-05| 19.392 3.57 8 .
100000

5 1| 1.6E-13 7.7568E-05| 77.568 9.27 20 .

6 2| 3.26-13 0.00031027| 310.272 25.4 70 10000 i

7 5 8E-13  0.0019392] 1939.2 101 600 1000 .

3 10| 1.6E-12 0.0077568] 7756.8 301 1180 .

9 20| 3.2E-12 0.0310272| 31027.2 937 4180 100

10 50 8E-12 0.19392] 193920 4370 21800 T

11 100| 1.6E-11 0.77568] 775680 14200 155000 ] .

12 [!rl 1 10 100

13 61

14 ®Range (um) @ SRIM (um) e Tumer {um)
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Clearly just calculating the range from ionization stopping power is insufficient ex-
cept for very low energies. This neglects the total stopping power used in SRIM,
which includes both nuclear and radiative terms. It’s perfectly OK if your calculated
results don’t line up with those in SRIM, provided you calculated ranges with only
the ionization stopping power, and actually checked your answers using SRIM. Note
that we have also provided the tabulated values from Turner p. 127, note how all
three differ! In practice one would use codes like SRIM to compute full stopping
power/range values.

Analytically develop a graph showing the ratio of radiated bremsstrahlung energy to the incoming
ion energy for the cases above.

For this problem, we can assume that the relative strength of the bremsstrahlung
stopping power compared to the ionization stopping power captures this value. So,
we just set up a calculation as follows, taking our formula from the blackboard on

October 25th: (dT)
dz ) rad _ Me 2 T _
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We simply plug in the values of T in Joules for each energy, note that Z=82 for
lead, and M=1amu for protons:

A B C D E F G H I J K
1 [E(MeV) E(J) rad/ioniz ratib .. .

2 0.1| 1.6E-14| 3.39514E-09 rad/ioniz ratio

3 0.2| 3.2E-14| 6.79027E-09 ~ 0.000004

4 0.5 8E-14| 1.69757E-08 & 0.0000035 .

5 1| 1.6E-13| 3.39514E-08 E 0.000003 M.

6 2| 3.26-13| 6.79027E-08 £ 0.0000025

7 5 8E-13| 1.69757E-07| 2 0.000002 _

8 10| 1.66-12| 3.39514E-07 %u_unuums e

g 20| 3.26-12| 6.79027E-07 5 o0.000001 _

10 50| se-12| 1.697576-06| & 0.000000s - A"

11 100] 1.6e-11| 3.39514E-061 0 @

12 o 20 40 ] 80 100 120
13 lon Energy (MeV)
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We note that this relation is linear, and that basically no energy is lost to bremsstrahlung
by protons in lead up to 100MeV. This is because the protons are far too massive to
be considerably deflected at high energies, so almost all energy is lost by ionization
stopping power.

Analytically develop a graph of the range of 1 MeV ions in lead vs. their atomic mass, with at
least ten points on the curve. Check your answer by using SRIM (www.srim.org) to simulate the
range of protons in lead at each energy. What other variable do you have to constrain to make a
uniform comparison?


http://www.srim.org

For this problem, we refer to Turner pp. 126-128 for a range-energy relation between
different ions of similar speed v (or 3):

— R, (B) (21)

where R, is the range of a proton of the same speed 3. Let’s choose the light atomic
numbers, so we choose from M=1amu to M=10 amu in increments of 1 amu, and
we calculate the speed expressed as B for each 1 MeV ion:
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We now tabulate these values for each incoming ion, look up the corresponding pro-
ton range from our previous calculations in Problem 2a, and compute the expected
range from Equation 20 above. We don’t have enough low-3 values from our previous
calculations, so let’s fit a function to the tabulated values and interpolate. We use
the SRIM values, to see how well our range-energy relation compares to an exact
calculation:

10°
In(y) = 2.95284 In(x) + 11.5355
104 {R2 = 0.995063

103
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This graph appears to fit pretty well, so we can just plug in values of beta for each
won, use Equation 20, and estimate the range of each ion. We arrive at the following
tabulated data and graph:

) . 2

Range (um)

A C D E F G H I J K L M
1z beta Rp (SRIM, um) |R_ion {(calc) R_ion (SRIM)
5 " 1] 0.046280676  11.72041037) 1172041037 917 SRIM/Calculation Comparison of lon Ranges in Lead
3 2| 0.03272538  4.212075156| 4.212075156 2.31 14
4 3| 0.026720161 2.31478924| 1.543192827 1.89 12 .
5 4| 0.023140338  1.513733441| 0.756866721 1.46 T 10
6 5| 0.020697347  1.088853682| 0.435541473 1.17 8 8
7 6| 0.018894007 0.8318B7788| 0.277295929 1.03 -E 5
8 7| 0.017452451 0.662556882| 0.189301966 0.93 %ﬂ 4 -
2] 8| 0.01636269 0.544004759| 0.13600119 0.89 = 2
10 9| 0.015426892  0.457172493| 0.101593887 0.83 0 N -4 H ® s H . H
11 | 10" 0.014635235  0.391311686] 0.078262337 0.81 o 2 4 5 g 10 2

12
13
14 e R_ion (calc) R_ion (SRIM)
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Here we have chosen the light ions, and assumed that their atomic mass is equal to
double the atomic number (M = 2Z). Note how much larger the SRIM range is, that
1s likely because we don’t account for the decreased stopping power at very low ener-
gies due to ion charge neutralization. From this screenshot of SRIM, note how much

Atomic Number (Z)



the tons deviate from their original directions, indicating that our physical model of

tonization stopping power from small-angle Coulombic scattering is not correct at
such a low energy range:
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Noodle Scratchers (50 points)

. One way of ensuring a uniform dose to a tumor of finite size (not small) is called intensity modulated
radiation therapy (IMRT), where the proton beam is modulated in energy and/or angle to shift the

Bragg peak to different specific locations. The goal is to maximize dose to the whole tumor, while
minimizing the dose to surrounding tissue. For the following questions, assume we are trying to treat
a tumor lcm in diameter, surrounded by 5cm of healthy tissue.

(a) (30 points) Derive a relationship between the required energy and the atomic mass of a singly
charged ion required to reach the center of the tumor. This will tell you how big of an accelerator
one needs to use each type of ion. You may want to use SRIM to roughly check your calculations.
Use the following formulas of stopping power in your calculations:
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The most important concept in this problem is that all three mechanisms of stopping
power are active, so the total stopping power (which ultimately determines the range)
must add all three mechanisms. Because the other two types of stopping power are

given as ratios of the ionization stopping power, we can write an expression for the
total stopping power:

dT dT dT dT
— =(— +(= +(—= (26)
dx total dx oniz. dx nucl. dx rad.

We already found in Problem 2b that protons have essentially no radiative stopping
power at these energies (even more true for particles heavier than protons), so we


http://theoncologist.alphamedpress.org/content/4/6/433.full
http://theoncologist.alphamedpress.org/content/4/6/433.full

can neglect it:
0

6@ @@ -
dx total du ioniz. dx nucl. L/ rad.

This yields the following formula for total stopping power:
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Now we turn our attention to figuring out how much the nuclear stopping power

meZ In (L
matters. For the case of 80 MeV protons, the quantity W evaluates to roughly
n| —=%
I

0.0019, so we can neglect that also:

(dT) _ 47TN]{;(2)§;22Z€4 |:ln ( ?mec262 ) - 52:| (30)
dx total meC B I(]' - 62)
We also note that 3 = % and B2 = Z—z = ]31152, so we substitute this into the formula
above:
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We can look up from Table 5.3 in the Turner book (p. 127) that the energy of protons
required to reach 5.08cm through water of a density of 1 _2; is 80 MeV. We then try
to estimate how this stopping power will vary with M, the mass of the incoming ion,
and what implications that will have on the required energy. For all ions [ is very
small, so the term J@Ifz is also very small, since kinetic energies much less than the
ion’s rest mass are required to get it 5cm into soft tissue (approximated as water).

We therefore have a relation for total stopping power which varies roughly with M
(and therefore A), plus a logarithmic term that has a value of between 4-7 in the
“100MeV range. Therefore, let’s take that as a factor of five. Finally, we note
that most of any ion’s range is determined by its stopping power at relatively high
energies, where it travels the farthest. All ion’s stopping powers increase greatly at
very low energies. This roughly 5*M proportionality would yield required energies
for protons, carbon ions, and iron ions of 80 MeV, 4,800 MeV, and 22,400 MeV,
respectively.

Using SRIM to check these values for hydrogen (Z=1, A=1), carbon (Z=6, A=12),
and iron (Z=26, A=56), we get required energies of 80 MeV, 1,750 MeV, and 18,500 MeV
respectively. Energies of the incoming ions were iteratively tuned until the correct
range (or very close to it) was reached. Guesses were made by using the Range-
Energy relation in Turner, p. 128 (Equation 5.43), as the Table 5.8 was actually
given for ranges of protons in water! We just had to calculate the required energy

(in the form of its speed [3) for each heavier ion, and we used those as first guesses

wn our SRIM calculations:

sem=R(B)= SR, (8) = =R,(9) ()
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Note that in SRIM, you must explicitly set the density of the material to the correct
value. SRIM simply calculates it as an average of the elemental number densities,
which is very wrong for HoO. See the following screenshot for the correct way to set
up this calculation:
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Courtesy of James F. Ziegler. Used with permission.

This is what it should look like while running the calculation:
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(15 points) Now derive a relationship between the amount of ionization of each of these ions at
their starting energy and within the Bragg peak. This gives ratio of the amount of damage to the
tumor compared to the surrounding tissue directly from the ions themselves.

The number of ion pairs (i) produced per unit path is directly proportional to the

10



tonization stopping power, and is given as follows:

1 (dT
Z_W dx oniz

where W is the energy required to create an ion. Therefore the larger the ratio of the
maximum stopping power to the stopping power at the ion’s maximum energy gives
this ratio of “damage” produced by each ion.

We already found in part (a) that the ionization stopping power is really all that
matters here, so let’s just stick with that:

(34)

0
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Now we express the ratio between ion pairs created as the stopping powers at E=5001
and E=F;:
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Note that all those crazy constants didn’t matter, because they all cancel out in a
ratio! Finally, to make our calculations even easier, we note that the ratio of the
mass of an electron to the mass of a nucleon is roughly % = 1,836. Substituting this
in, we get:

(%)maw — Ei[ln (128%%(34)] (38)
(% ) incident 5001 [ln ( 18%521_)]

Using SRIM to compute the number of ionizations per unit length for each of the
three ions at their respective incident energies, we get ratios of 6, 9, and 9 respectively
for H, C, and Fe. See the attached screenshot for how to get this ratio from SRIM:
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(¢) (5 points) Consider the cases of electrons, protons, carbon ions, and iron ions. Which type of ion
is most suitable for use in IMRT, and why? Hint: Consider other mechanisms of ion energy loss
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in tissue, and quantitatively compare how intense they would be in a relative sense.

Protons are by far the most suitable for IMRT, which is probably why it’s used in
cancer therapy today. FElectrons have a far lower mass, and therefore far higher
radiative stopping powers. This would present a danger to the patient, plus the fact
that an electron can be more deflected from a narrow beam from interacting with
another electron or nucleus. Carbon and iron ions have a far higher stopping power
due to the 7> dependence in both the ionization and nuclear stopping powers, so they
would have to be accelerated to far, far higher energies to reach the center of a tumor
5cm into a person. Therefore, protons represent the best balance.
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