
   

            
   

       

  

   

        

 
 

Introduction to Radiation 
Damage in Metals 

Journey from incoming particles 

Most of the slides are borrowed from 

22.14 Materials in Nuclear Engineering 

22.74 Radiation Damage and Effects in Nuclear Materials 

Was. means from Prof. Was’ text book: 

Images on Pages 1, 7, 8, 10, 11, 24, 26, 28, 30–32, 39, 52, 53, 56, 57, and 65 © Springer 
Nature. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 
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Radiation Damage 

Radiation 
Damage 

Radiation Damage Event (Monday) 
the transfer of energy from an incident projectile 
to the solid and the resulting distribution of 
target atoms after completion of the event 

Radiation Damage Effects (Wednesday) 
Subsequent events involving the migration of the 
point defects and defect clusters and additional 
clustering or dissolution of the clusters 
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From Radiation Damage Event
to Radiation Damage Effects 

Radiation Damage Event 

Radiation Damage Effects 

Courtesy Elsevier, Inc., https://www.sciencedirect.com. Used with permission. 

Short & Yip. Current Opinions in Solid State Material Science (2015) 
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Materials Intro. 

• Crystalline vs. Amorphous: The difference is long-
range order 
• Amorphous systems can have short-range order 

© The Australian National University, Canberra. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

http://physics.anu.edu.au/eme/research/amorphous.php 
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Materials Intro. 

Body-Centered Cubic 
(BCC) Structure 

Crystalline 
Face Centered Cubic materials 
(FCC) Structure lattices 

Hexagonal Close Packed 
(HCP) Structure 

These images showing BCC structure, FCC 
structure, and HCP structure are reprinted/reused 
by permission from, © Iowa State University 
Center for Nondestructive Evaluation (CNDE).MIT Dept. of Nuclear Science & Engineering 
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Form Follows Structure 

Pyrite (FeS2), simple 
cubic (SC) 

Gold (Au), face centered 
cubic (FCC) 

Gypsum, monoclinic 

© Source unknown (upper) and © Amethyst Galleries, Inc. (lower). All 
rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

Courtesy of Materialscientist (upper) and CarlesMillan 
© Pala International. All rights reserved. This content is (lower) on Wikipedia. License: CC BY-SA. This content is 
excluded from our Creative Commons license. For more excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use.information, see https://ocw.mit.edu/help/faq-fair-use. 
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Point Defects (0D) – 
Vacancies Was, p. 163 

Vacancy in FCC lattice Vacancy in BCC lattice 
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Point Defects (0D) – 
Interstitials Was, p. 157 

• Extra atoms shoved into the crystal lattice 

Tetrahedron 
Octahedron 

Octahedral interstitial in BCC Tetrahedral interstitial in BCC 
lattice lattice 
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Point Defects (0D) – Frenkel 
Pair 

Frenkel Pair: an atom is 
displaced from its lattice 
position to an interstitial site, 
creating a vacancy at the 
original site and an interstitial 
defect at the new location 

Image courtesy of VladVD on Wikimedia. License: CC BY-SA. This 
content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use. 

https://commons.wikimedia.org/w/index.php?curid=25 
745819 
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Dislocations (1D) 
Was, p. 268 

• Two types: Edge & Screw 
• Edge dislocation: Extra half-plane of atoms shoved into the lattice 
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Dislocations (1D) 
Was, p. 268 

• Two types: Edge & Screw 
• Screw dislocation: 
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Grain Boundaries (2D) 
http://www-hrem.msm.cam.ac.uk/gallery/ 

• Regions of different 
orientation 

© H. Föll. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_7/backbone/r7_2_1.html 

Tilt grain boundary in Al Courtesy of Sandia National Lab. 
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Inclusions (3D) 
From Prof. Short’s own image collection 

• Other phases trapped 
within base material 

• Examples: 
• Secondary particle 

precipitates in Zircaloys 
• Carbides in steels 
• Y2O3 particles in Oxide 

Dispersion Strengthened Single crystal of MnS, space group 
(ODS) steels Fm3!m, FCC crystal structure 

embedded in Alcator rotor steel 

MIT Dept. of Nuclear Science & Engineering Page 13 22.01: Intro to Nuclear Engineering and Ionizing Radiation 



  

 

 

   

                                  
   

        
       

  

Summary of Material Intro. 

• Crystalline Solids 

• 0D Defects 
• Vacancies & Interstitials 

• 1D Defects (Dislocations) 

• 2D & 3D Defects 
We are interested in how many defects ( 
Frenkel pairs & defect clusters) are produced 
by incoming particles 
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Radiation Damage Event 

The result of a radiation damage event is the creation of a collection of 
point defects (vacancies and interstitials) and clusters of these defects 
in the crystal lattice. (10 -11 s) 

This can be described by how many displacements of atoms (DPAs) are 
created by incoming particles 
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Displacement Theory 

• Define a rate of atomic displacements using flux: 

Maximum energy available Energy dependent flux distribution 

%&'( 

! = # ) ∗ Φ ,- ∗ ./ ,- 0,-
$ 

1-234. ;<=62 Reaction rate Material number density Displacement cross section 67829: 67 
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Displacement Theory 

• Define a rate of atomic displacements using flux: 
%&'( 

! = # ) ∗ Φ ,- ∗ ./ ,- 0,-
$ 

! 123 %&'( 

= # Φ ,- ∗ ./ ,- 0,-) = 456 $ 
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Displacement Theory 

• Define a rate of atomic displacements using flux: 

!"# *+,-
= ( Φ /0 ∗ 23 /0 4/0$%& ) 

Probability that an atom displaced by a 
particle with energy Ei leaves with recoil 
energy T (differential energy transfer cross 

2 /0, 9 : 9 49 
section) 5+,-

23 /0 = (
5+67 Number of atomic 

displacements 
• T is the PKA (displaced atom) recoil energy from a PKA with 

energy T 
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Displacement Theory 

• Define a rate of atomic displacements using flux: 
Probability that an atom displaced by a 
particle with energy Ei leaves with recoil 
energy T (differential energy transfer cross 
section) 

!"# *+,- .+,-
= ( ($%& ) .+/0 

Number of atomic 
displacements 
from a PKA with 
energy T 

Φ 23 ∗ 5 23, 7 8 7 97923 
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    Journey of an incoming ion 

(Ei) 
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  What happened until it stops 

Explanation on board 

(!" , !$ , %&, %') 
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Journey of multiple
incoming ions 

("#$) Continuous description of a large 
quantity discrete events 

Stopping power 
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Coulombic/Nuclear Stopping 
Power 
• Stopping Power is defined as differential energy 

loss as a function of energy: 

= −'$! ∗ # $ '( 

• Separable components due to nuclear (screened 
nucleus Coulombic), electronic, and radiative terms: 

= − '$ − '$ − '$! ∗ # $ '( )*+,. '( .,.+. '( /01. 
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Relative Stopping Powers 
Was, p. 84 
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Range 
Source: Wikimedia Commons 

• Integrate inverse of stopping power over the energy 

range of the particle: !"#$% = ∫(
)*+, 

. 

-
) 
/0 

• Not all particles have 
identical range, straggling 
describes this variation 

This image is in the public domain. 
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Range of the incoming ions 
Was, p. 66 

MIT Dept. of Nuclear Science & Engineering Weiyue Zhou 
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journey continues by PKAs 

PKAs How many atoms will be displaced 
by a PKA of energy T, !(#) 

Kinchin and Pease Model (K-P Model) 
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Kinchin-Pease Model 
Was, p. 77 

• Final formulation: 
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Assumptions made by K-P 
model 

1. The cascade is created by a sequence of two-body elastic 
collisions between atoms. 

2. The displacement probability is 1 for ! ≥ #$ 
3. No energy passes to the lattice during the collision 

process 
4. For all energies less than cutoff energy #% , electronic 

stopping is ignored 
5. The energy transfer cross section is given by the hard 

sphere model 
6. Effects due to crystal structure are neglected 
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K-P Mods – Modifications by 
release the assumptions 

Was, p. 109 
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The Real σD Is Ugly! 
Was, p. 108 
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Example σD 
Was, p. 109 
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Probability that an atom displaced by a
particle with energy Ei leaves with recoil 
energy T (differential energy transfer cross
section)

Number of atomic

(
)

*+,-
(
.+/0

.+,-
Φ 23 ∗ 5 23, 7 8 7 97923

Displacement Theory 

• Define a rate of atomic displacements using flux: 

Does the number of displacements 
per atom per second we calculated 

!"# this way equal with the stable defects 
=$%& (Frenkel pairs & defect clusters) 

introduced by incoming particles? 
from a PKA with 
energy T 
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Cascade Stages – Ballistics 

• PKA initiates a cascade 
of displacive collisions 

• Ends until no atom 
contains enough energy 
to create further 
displacements 

© IOP Publishing. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

K. O. Trachenko, M. T. Dove. E. K. H. Salje. J. Phys. Condens. Matter, 13:1947 (2001) 
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Cascade Stages – Thermal 
Spike 
• Collisional energy of 

the displaced atoms is 
shared among their 
neighboring atoms 

• Temperature rises 
very locally for a 
very short time 

© IOP Publishing. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

K. O. Trachenko, M. T. Dove. E. K. H. Salje. J. Phys. Condens. Matter, 13:1947 (2001) 

MIT Dept. of Nuclear Science & Engineering Page 3522.01: Intro to Nuclear Engineering and Ionizing Radiation 

https://ocw.mit.edu/help/faq-fair-use


  

  
  

 

            
   

     

    

Cascade Stages – Quench 

• Heat is conducted away 
EXTREMELY quickly 

• Stable lattice defects 
form either as point 
defects or defect 
clusters 

© IOP Publishing. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

K. O. Trachenko, M. T. Dove. E. K. H. Salje. J. Phys. Cond. Matter, 13:1947 (2001) 
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Radiation Damage Event 

• Radiation damage event completes after the quench 
stage 

• We define the displacement efficiency !, as the fraction 
of the “ballistically” produced displacements that 
survive the cascade quench 

• ! ∗ 
#$% 0-./ Φ 45= ! ∗ ∫+

,-./ ∫0-12 
∗ 6 45, 8 9 8 :8:45&'( 
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Simulation Methods – MD 
http://www-personal.umich.edu/~gsw/movies.html 

© Gary S. Was. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 
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Types of Radiation 
Was, p. 138 

• Different radiation produces different cascades 
Mass & Charge Stopping Mechanism 

Almost All electronic 
Increasing 

mass, same 
charge Mostly electronic 

Nuclear and 
electronic 

Moderate 
mass, no Entirely nuclear 

charge 
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Radiation damage effects 

Radiation 
Damage 
Effects 

Physical effects 
• RIS (Radiation-induced segregation) 
• Nucleation and growth of dislocation loops 

and voids 
• Phase Stability 

Mechanical effects: when stress is applied 
• Irradiation hardening and deformation 
• Fracture and Embrittlement 
• Irradiation Creep and Growth 
• IRSCC (irradiation-assisted stress corrosion cracking) 
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Building Up to Radiation
Effects 

We have 
introduced 

Wednesday 
Short & Yip. Current Opinions in Solid State Material Science (2015) 

Courtesy Elsevier, Inc., https://www.sciencedirect.com. Used with permission. 
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    PKA with energy T 

2 1 ∗ ! 

Radiation Damage Event: from incoming 
particles to point defects and defect 
clusters http://www-personal.umich.edu/~gsw/movies.html 

Incoming particle 
/ -., 1 

Φ -.

%&'(
#
)&'(

! ∗ # Φ -. ∗ / -., 1 2 1 313-.
$ )&*+

Courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy. 
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Damage After the Cascade 

• What happens to damage after the cascade?
• Production

• Recombination (One interstitial finds one vacancy and
they annihilate)

• Absorption at sinks (migrate to the sink and get trapped)

• Migration (keep moving)
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Point Defect Balance 

Change = Gain – Loss (where have we used this format 
before?) 

• What are the possible gain terms?
• Displacement production

• What are the possible loss terms?
• Recombination

• Loss to sinks

• Diffusion
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Point Defect Balance 

Change = Gain – Loss 

• What are the possible sinks?
• Grain boundaries

• Dislocations For point defects, 
• Impurities sinks are higher 
• Free surfaces dimensional defects 
• Incoherent precipitates
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Cluster Dynamics 

• Equations that govern the growth and shrinkage of 
clusters via defect emission and absorption 

• Same way to use equation to describe it: 

!"#$%&'( = *+,-% − /0%%'% !& 
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Cluster Dynamics (for 
Vacancies) 

!"# = &'()* − ,-**.* !$ 
• What are the gain terms?

• Direct production

• Absorption of same type defects & clusters from smaller
clusters

• Emission of same type defects & clusters from larger clusters

• Absorption of different types of defects & clusters from larger
clusters

MIT Dept. of Nuclear Science & Engineering Page 4722.01: Intro to Nuclear Engineering and Ionizing Radiation 



   

    

 

 

 

            
   

Cluster Dynamics (for 
Vacancies) 

!"# = &'()* − ,-**.* !$ 
• What are the loss terms? 

• Direct destruction (loop collapse, etc.) 

• Absorption of same type defects & clusters from size j 
• Emission of same type defects & clusters from size j 
• Absorption of different types of defects & clusters from 

size j 
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Bridging radiation damage event to 
radiation damage effects 

http://www-personal.umich.edu/~gsw/movies.html 

point defect kinetics 

Change = Gain – Loss 

defect cluster dynamics 
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Bridging radiation damage event to 
radiation damage effects 

point defect kinetics 

Population and 
distribution ofChange = Gain – Loss 
point defects and 
defect clusters 

defect cluster dynamics 
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Radiation damage effects 

Population and 
distribution of 
point defects and 
defect clusters 

Radiation 
Damage 
Effects 

Physical effects 
• RIS (Radiation-induced segregation) 
• Nucleation and growth of dislocation loops 

and voids 
• Phase Stability 

Mechanical effects: when stress is applied 
• Irradiation hardening and deformation 
• Fracture and Embrittlement 
• Irradiation Creep and Growth 
• IRSCC (irradiation-assisted stress corrosion cracking) 
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RIS (Radiation induced segregation) 

Was, p. 255 

RIS: the spatial redistribution 
of solute and impurity elements 
in the metal at elevated 
temperature under irradiation 
Influence: changes in the 
local properties of the solid, 
which may induce susceptibility 
to a host of processes that can 
degrade the integrity of the 
component. 
RIS was discovered around 1970s 
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Mechanism of RIS 

Was, p. 256 

Excess point defects 
produced from radiation 

Defect fluxes to 
defect sinks (GB) 

Different atoms 
couple differently to 
the defect fluxes 
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RIS Effect on Material Properties 

• Corrosion 
• Cr depletion 

• Embrittlement, Fracture Toughness Reduction 
• P, S segregation to microstructural sinks 

• Hardening, Strengthening 
• Precipitate formation by smaller vacancy solutes (Mo, 

Cu, Si) towards sinks 
• Precipitate formation by interstitial solutes (C, N) 

towards sinks 
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Nucleation and growth of dislocation 
loops and voids 

defect cluster dynamics (size or number of defects) 

nucleation 

Dislocation loops and voids 
(configuration of defect clusters) 

point defect 
growth 

defect clusters 
Population and distribution 
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Example dislocation loops 

Page 52 

Was, p. 370 

MIT Dept. of Nuclear Science & Engineering 
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Example voids 

Was, p. 380 
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Voids lead to Swelling (dimensional 
change) 

Courtesy Elsevier, Inc., https://www.sciencedirect.com. Used with permission. 
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Swelling is a big issue 

• Spiral distortion of 316-clad fuel 
pins induced by swelling and 
irradiation creep in an FFTF fuel 
assembly where the wire wrap swells 
less than the cladding. 

• Reproduced from Makenas, B. J.; Chastain, S. A.; Gneiting, B. C. In Proceedings of LMR: 
A Decade of LMR Progress and Promise; ANS: La Grange Park, IL, 1990; pp 176–183; 
(middle) Swelling-induced changes in length of fuel pins of the same assembly in response 
to gradients in dose rate, temperature, and production lot variations as observed at the top 
of the fuel pin bundle. Reproduced from Makenas, B. J.; Chastain, S. A.; Gneiting, B. C. In 
Proceedings of LMR: A Decade of LMR Progress and Promise; ANS: La Grange Park, IL, 
1990; pp 176–183; (bottom) swelling-induced distortion of a BN-600 fuel assembly and an 
individual pin where the wire swells more than the cladding. Reproduced from Astashov, 
S. E.; Kozmanov, E. A.; Ogorodov, A. N.; Roslyakov, V. F.; Chuev, V. V.; Sheinkman, A. 
G. In Studies of the Structural Materials in the Core Components of Fast Sodium Reactors; 
Russian Academy of Science: Urals Branch, Ekaterinburg, 1984; pp 48–84, in Russian. 
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Phase instability 

Local enrichment or depletion of solute atoms 

Formation or dissolution of phases 
Extreme case 

Amorphization 
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Radiation damage effects 

Population and 
distribution of 
point defects and 
defect clusters 

Radiation 
Damage 
Effects 

Physical effects 
• RIS (Radiation-induced segregation) 
• Nucleation and growth of dislocation loops 

and voids 
• Phase Stability 

Mechanical effects: when stress is applied 
• Irradiation hardening and deformation 
• Fracture and Embrittlement 
• Irradiation Creep and Growth 
• IRSCC (irradiation-assisted stress corrosion cracking) 
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Irradiation Assisted Stress 
Corrosion Cracking (IASCC) 
• Stress corrosion cracking 

requires: 
• Tensile stress 
• Susceptible material 
• Aggressive environment 

• Radiation can: 
• Increase susceptibility 
• Generate stresses 
• Induce hydrolysis, free 

radicals, more corrosion Schematic illustrating mechanistic issues believed to influence crack 
advance during IASCC of austenitic stainless steels 

S.M Bruemmer et al.,, J. Nucl. Mater., 274(3):299-314 (1999) 

Courtesy Elsevier, Inc., https://www.sciencedirect.com. Used with permission. 
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IASCC of PWR Baffle Bolts 
(http://www.sciencedirect.com/science/article/pii/S1369702110702200) 

Two big problems here: (1) The bolts 
can break, loosening the baffle. (2) 
The bolt heads get swept up by the 
coolant, becoming foreign material. 

Courtesy Elsevier, Inc., https://www.sciencedirect.com. Used with permission. 
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General challenges 

• Quantify radiation damage 
• Problems using DPA 

• DPA is calculated, not measurable 
• Too many steps from DPA to the effects 
• Difficult to compare different conditions 

• What is a good unit? 
• Not that general (not too far away from effects) 
• Not that specific (should not only for one specific effect) 
• Can be calculated 
• Can be measured 
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General challenges 

• Simulation limitations 

Was, p. 149 
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General challenges 

• Experimental constrains 
• Limitations for experiments 

• Time 
• Cost 
• Safety 
• Sample examination 

• What is a good experimental design 
• Not that simplified (not too different with application 

conditions) 
• Not that complex (not involving too many variables) 
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