
22.01 – Intro to Ionizing Radiation Radioactive Decay, Slide 1

Slides for 
Radioactive Decay

 2024



22.01 – Intro to Ionizing Radiation Radioactive Decay, Slide 2

But First… Decay Diagrams

40K gives the most generalized example, minus alpha decay

http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/kar.html
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Alpha Decay Diagrams

© KAERI. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Beta Decay Diagrams and 
Energetics

𝟓𝟓
𝟏𝟏𝟏𝟏𝑩𝑩 → 𝟔𝟔

𝟏𝟏𝟏𝟏𝑪𝑪 + 𝜷𝜷− + �𝝂𝝂

What does the number of 
antineutrinos vs. energy look like?
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Notable Beta Decay Reactions

© KAERI. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Detecting Neutrinos – Super 
Kamiokande, Japan

© Kamoka Observatory, ICRR (left), © Science Photo Library Limited (center), and © BBC (right). All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Positron Decay Diagrams and 
Required Energetics

Why 2mec2? We emit one positron (Erest = 0.511MeV) and the 
daughter nucleus must shed one orbital electron to conserve charge.

Q > 1.022 MeV

© KAERI. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Positron Annihilation Spectroscopy
• Positrons are a tremendously powerful and self-seeking probe of the chemical, 
electronic and & magnetic properties of vacancies/vacancy-clusters and locally 
enriched regions (precipitates) of stronger positron affinity in metallic alloys.

• Positron annihilation experiments must be carefully analyzed, but strong 
theoretical foundation exists; especially when combined with complementary 
techniques (3DAP, SANS, TEM, PIA, mechanical properties, …)

Bulk metal without defects
Vacancy defects

Embedded particles of 
stronger positron affinity

Delocalized positron
density Strongly localized positron density

τ∼110 ps

τ∼170 ps τ∼110 ps

• localize in open-volume regions (vacancies, voids, other defects) due to lack of positively charged atomic nuclei
• localize in regions of higher positron affinity (elemental specific, eV)

Cr: -2.62  Mn -3.72  Fe:-3.84  Cr:-2.62  Ni:-4.46  Cu: -4.81  Zr: -3.98
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Positron Annihilation Spectroscopy Methods
Methods:

- Positron lifetime (correlates
with electron density; vacancies
& vacancy cluster size)

- Coincidence Doppler Broadening,
CDB/OEMS* (e- momentum;
composition - Vacancies influence low
momentum; chemical variations
generally observed at high momentum)

- Magnetic, polarized CDB/OEMS
(majority & minority e-; magnetism)**

- 2D  ACAR (Fermi surface)
- Age Momentum Correlation, AMOC
(distinguish copper vs vacancy trapping)
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* P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielson, K.G. Lynn, Phys Rev Let 77 (1996) 2097.
** P. Asoka-Kumar, B.D. Wirth, et al., Phil. Mag. Lett. 82 (2002) 609.
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Oscilloscope
Sample Region Fast Scintillator 

Detectors

Ge
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Positron Lifetime Measurement
Lifetimes determined by measuring the 
time between implantation and annihilation

<τ> ~ 187 ps

<τ> ~ 180 ps
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Coincidence Doppler Broadening

Kinematic sections provide momentum spectra of orbital 
electrons, whose momenta are element-specific

Doppler shift probes the local electron momentum

Doppler shift, ∆E 
Is proportional to 
electron momentum, pL

511 + ∆E 511 - ∆E

Blue Shift Red Shift
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Coincidence Doppler Broadening

Doppler shift probes the local electron momentum

Doppler shift, ∆E 
Is proportional to 
electron momentum, pL

511 + ∆E 511 - ∆E

Blue Shift Red Shift
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Cluster Dynamics modeling of radiation damage in neutron 
irradiated Fe: Vacancy cluster comparisons with positrons**

0.0001 dpa

0.0009 dpa

0.009 dpa

Size distribution of vacancy clusters Total density of vacancy clusters

Eldrup etc. applied ‘trapping model’ to get the rough information of vacancy clusters’ distribution 
at different irradiation levels*

Five-component analysis is used, four of which have fixed lifetimes: 200, 300, 400, and 500 ps, equivalent to three-dimensional vacancy 
clusters of sizes of about 0.35 (2V), 0.54 (7V), 0.73 (18V) and >1.0 (45V) nm in diameter, respectively. 

*M. Eldrup, etc. J. Nucl. Mater. 307-311 (2002) 912-917

** X. Hu, D. Xu, T.S. Byun, and B.D. Wirth, Modeling & Simulation in Materials Science Engineering (2014) accepted

© IOP Publishing. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Interested in PAS? Read More 
Here!
X. Hu, D. Xu, T.S. Byun, and B.D. Wirth, “Modeling of Irradiation Hardening of Iron after Low Dose and
Low Temperature Neutron Irradiation”, Modeling and Simulation in Materials Science & Engineering 22
(2014) 0655002

M.J. Alinger, S.C. Glade, B.D. Wirth, G.R. Odette, T. Toyama, Y. Nagai, and M. Hasegawa, “Positron
annihilation characterization of nanostructured ferritic alloys”, Materials Science and Engineering A 518
(2009) 150-157.

S.C. Glade, B.D. Wirth, G.R. Odette and P. Asoka-Kumar, “Positron Annihilation Spectroscopy and
Small Angle Neutron Scattering Characterization of Nanostructural Features in High-Nickel Model
Reactor Pressure Vessel Steels”, J. Nucl. Mater 351 (2006) 197.

S.C. Glade, B.D. Wirth, G.R. Odette, P. Asoka-Kumar, P.A. Sterne, and R.H. Howell, “Positron
annihilation spectroscopy and small angle neutron scattering characterizations of the effect of Mn on the
nanostructural features formed in irradiated Fe-Cu-Mn alloys”, Philosophical Magazine 85 (2005) 629.

P. Asoka-Kumar, R. Howell, T.G. Nieh, P.A. Sterne, B.D. Wirth, R.H. Dauskardt, K.M. Flores, D. Suh,
G.R. Odette, “Opportunities for materials characterization using high-energy positron beams”, Applied
Surface Science 194 (2002) 160.
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Electron Capture – Competes 
with Positron Decay

X-ray
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Electron Capture – Competes 
with Positron Decay

1.022 MeV

2.843
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Positron or Electron Capture?

Higher Q-value is more likely to proceed via positron decay
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Gamma Decay (Isomeric 
Transition, or IT)

Q = BED – BEP = Eγ

235U

241Am© KAERI. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Internal Conversion (IC) Competes 
with Isomeric Transition (IT)
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IT-Like Decay Possibilities

Normal gamma 
ray emission

Eγ = Q

Internal 
conversion
𝑬𝑬𝒆𝒆− = 𝑬𝑬𝜸𝜸 − 𝑬𝑬𝒃𝒃

Subsequent
x-ray emission
(Kα, Kβ, Lα …)

Auger electron 
emission

KE = Ef - Ei - EAuger

© University of Guelph. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Auger Electron Emission
http://www.lpdlabservices.co.uk/analytical_techniques/surface_analysis/aes.php

Image by MIT OpenCourseWare.
© Source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Auger Electron Spectroscopy
https://www.knmf.kit.edu/AES.php

© Tobias Weingärtner, Karlsruhe Institute of Technology. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Auger Depth Profiling
https://www.knmf.kit.edu/AES.php

© Source unknown. All rights reserved. This content is 
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use.
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Radioactive Decay Summary



22.01 – Intro to Ionizing Radiation Radioactive Decay, Slide 27

Photon Emission Lines of Hydrogen

© Wikimedia Foundation. License CC BY-SA. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Half Life vs. Decay Constant

𝑡𝑡 �1 2 τ

𝑵𝑵𝟎𝟎/𝟐𝟐

𝑵𝑵𝟎𝟎/𝒆𝒆

Source: Yip, Sidney. Nuclear Radiation Interactions, 2014. © World Scientific 
Publishing Co. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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The Radon Decay Chain
http://www.omfi.hu/cejoem/Volume13/Vol13No1/CE07_1-01.html

Courtesy of National Academies Press. Used with permission.
Source: National Research Council. Health Effects of Exposure to Radon:
BEIR VI. The National Academies Press, 1999. doi:10.17226/5499.
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The Primordial Nuclides

© CRC Press. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 
Source: Shultis, J. K., and R. E. Faw. Fundamentals of Nuclear Science and 
Engineering, 2nd Edition. CRC Press, 2007.
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Series Decay Chains

Source: Yip, Sidney. Nuclear Radiation Interactions, 2014. © World Scientific 
Publishing Co. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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