

Introduction to Nuclear Energy

22.01 – Introduction to Radiation

2024

© Max-Plank Institut fur Plasmaphysics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

^{22.01 –} Intro to Ionizing Radiation

The Nuclear Fission Process

Neutron-driven chain reaction producing heat

- Uranium-235 is the fuel:
 2.5 million times more energy per kg than coal
- Only 37 tons of fuel (3%-enriched uranium) per year needed for 1000 MWe reactor

Emission-free heat source, can be converted into multiple energy products

[JB]

Nuclear Compared to Fossil Fuel

Fuel energy content

Coal (C): $C + O_2 \rightarrow CO_2 + 4 \text{ eV}$

Natural Gas (CH₄): $CH_4 + O_2 \rightarrow CO_2 + 2H_2O + 8 \text{ eV}$

Nuclear (U): ${}^{235}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n + 200 \text{ MeV}$

Fuel Consumption, 1000 MWe Power Plant (~740,000 homes)

Coal (40% efficiency): 6750 ton/day

Natural Gas (50% efficiency): 64 m³/sec

Nuclear (33% efficiency): 3 kg/day

[JB]

From Rocks to Reactors

U ore

from our Creative

[JB]

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Reactor Intro: Acronyms!!!

LBEFR **CANDU** RBMK NNFRLFR LBE IFR PHWR AGR **MSR** GFR VHTR **SCWR** PBMR SFR NaK

Boiling Water Reactor (BWR)

Public domain image, from U.S. NRC.

BWR Primary System

BWR Underside

© SPD Schwachhausen Süd/Ost. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Global Trade Media. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Turbine and Generator

Turbine-generator

turns heat into work, then electricity

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

[JB]

Pressurized Water Reactor (PWR)

Public domain image, from U.S. NRC.

PWR Primary System

© Westinghouse. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

[JB]

The MIT Research Reactor

- 6 MW power
- Located near NW12, Albany St.
- Operated by MIT students
- In service since 1954!

© RAGO. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Gas Cooled Reactors

More acronyms:

- -NU (natural uranium)
- -(L,M,H)EU (low, medium, high) enriched uranium

AGR (Advanced Gas-cooled Reactor)

© Wikipedia User: MesserWoland. License CC BY-SA. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Coolant: CO₂

T_{out}: Med-high

Fuel: LEU

Moderator: Graphite

Power level: Med.

Power density: Low

(Why?)

Feasibility: High

AGR Special Features, Peculiarities

Courtesy of Sellafield Ltd. Used with permission.

Windscale Prototype AGR Image source: http://www.sellafieldsites.com/

Capable of on-load fueling (or part-load)

Graphite moderator must be cooled due to oxidation in CO₂

PBMR (Pebble Bed Modular Reactor)

https://en.wikipedia.org/wiki/Pebble-bed reactor

Coolant: Helium

T_{out}: High

Fuel: LEU - MEU

Moderator: Graphite

Power level: Low – Med.

Power density: Low

Feasibility: Low – Med.

PBMR Special Features, Peculiarities

Image source: "High Temperature Gas Reactors: The Next Generation?" Andrew C. Kadak, MIT, July 14, 2004

Courtesy of Andrew C. Kadak. Used with permission.

Continuous fuel cycle
Pebble fuel (not rods)
Pebbles act as built-in
disposal methods

Very passive safety systems (nat. circ.)

Unknowns: material concerns (fission products), stresses

VHTR (Very High Temperature Reactor)

Courtesy of Idaho National Laboratory. Used with permission.

Coolant: Helium, molten salt

T_{out}: High (very!)

Fuel: LEU - MEU

Moderator: Graphite

Power level: Low

Power density: Low or high

Feasibility: Low – Med.

VHTR Special Features, Peculiarities

Image source: "High Temperature Gas Reactors: The Next Generation?" Andrew C. Kadak, MIT, July 14, 2004

Courtesy of Andrew C. Kadak. Used with permission.

High T_{out} opens up all doors to hydrogen Significant high-T materials concerns Molten salt variety can be more corrosive Single phase coolant

downs

Water Cooled Reactors

More acronyms/symbols:

-D₂O – Deuterium oxide (heavy water)

CANDU – (CANada Deuterium-Uranium reactor)

Courtesy of Wikipedia User: Inductiveload. Used with permission.

Coolant: D₂O

T_{out}: Low

Fuel: NU - LEU (Why?)

Moderator: D₂O

Power level: Med. - High

Power density: Med.

Feasibility: High

CANDU Special Features, Peculiarities

Continuous fuel cycle Expensive moderator

-~25% of capital cost

Moderator is unpressurized, thermally insulated

Courtesy of NSERC-UNENE Industrial Research Chair Program at University of Waterloo. Used with permission.

CANDU fuel bundle. Image source: http://www.civil.uwaterloo.ca/watrisk/research.html

RBMK – Reaktor Bolshoy Moshchnosti Kanalniy

© Wikipedia Users: Fireice and Sakurambo. License CC BY-SA. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Image source: Wikimedia Commons

Coolant: H₂O

T_{out}: Low

Fuel: NU - LEU

Moderator: Graphite

Power level: High

Power density: Low

Feasibility: Med. (safety)

RBMK Special Features, Peculiarities

Online refueling possible High positive void

Improvements in design

coefficient – Why?

-No more graphite-tipped control rods

-More control rods

Chernobyl-3 RBMK Reactor Hall. Image source: http://www.sciencephoto.com/media/342208/enlarge

© Science Photo Library Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

SCWR Supercritial Water Reactor

Courtesy of Idaho National Laboratory. Used with permission.

Image source:

http://www.ornl.gov/info/news/pulse/pulse_v120_02.htm

Coolant: SC-H₂O

T_{out}: Med.

Fuel: NU - LEU

Moderator: SC-H₂O

Power level: High

Power density: High

Feasibility: Low (now)

SCWR Special Features, Peculiarities

© Geothermania. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Phase diagram for water. Image source: http://geothermania.blogspot.com/2011/05/research-of-supercritical-water-may.html

Very simple design

Significant materials concerns

Coolant/moderator voiding a non-issue

High efficiency

Start-up procedures (preheating) to bring coolant supercritial

Liquid Metal Cooled Reactors

More acronyms/symbols:

- -LBE Lead-bismuth eutectic
- -NaK Sodium-potassium alloy

SFR (or NaK-FR) Sodium Fast Reactor

Courtesy of Idaho National Laboratory. Used with permission.

Coolant: Liquid sodium

T_{out}: Med.

Fuel: NEU - HEU

Moderator: None

Power levels: All

Power density: High

Feasibility: Low-Med.

(now)

SFR Special Features, Peculiarities

Courtesy of and copyright Bruno Comby / EFN - Environmentalists For Nuclear Energy. Used with permission.

Molten sodium at MONJU, Japan. Image source: http://www.ecolo.org/photos/visite/monju_02/monju.sodium.hot.melted.jpg

No pressurization

Very high k, c_p

High material
 compatibility

High boiling margin

Neutron activation –
 worker dose concerns

$$Na + H_2O = RUN AWAY$$

LFR (or LBEFR) Lead Fast Reactor

Courtesy of Idaho National Laboratory. Used with permission.

Coolant: Lead (or LBE)

T_{out}: Med. (higher soon...)

Fuel: MEU

Moderator: None

Power levels: All

Power density: High

Feasibility: Low-Med.

(now)

LFR Special Features, Peculiarities

Public domain image. (Source: Wikimedia Commons)

Alfa-class Russian submarine, using a LFR as its propulsion system.

High heat capacity Self-shielding Must melt coolant first Essentially no coolant voiding possible Polonium creation Material corrosion Coolant cost (LBE)

Molten Salt Cooled Reactors

More acronyms/symbols:

-FLiBe – Lithium & beryllium fluoride salts

MSR Molten Salt Reactor

Coolant: FLiBe, UF₄

T_{out}: Med. - High

Fuel: MEU

Moderator: Graphite

Power levels: All

Power density: High

Feasibility: Med. (now)

Courtesy of Idaho National Laboratory. Used with permission.

MSR Special Features, Peculiarities

Public domain image.

Molten FLiBe. Image source: Wikimedia Commons

Unpressurized core

ThF₄/UF₄ fluid can be both fuel & coolant

Very negative temperature coeff.

High neutron flux causes Li→³H, ³H+F⁻→HF (hydrofluoric acid)

On-site salt reprocessing

FHR: Fluoride-salt-cooled High-temperature Reactor

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

See K. Sridrahan, "Fluoride Salt-Cooled High-Temperature Reactor (FHR) – Materials and Corrosion." Presentation, IAEA, Vienna, Austria, June 10-13, 2004.

Coolant: FLiBe

T_{out}: Med. - High

Fuel: MEU

Moderator: Graphite

Power levels: All

Power density: High

Feasibility: Med. (now)

FHR: Nuclear & Air Brayton Combined Cycle

Image source: P. Peterson et al., "Integrated Research Project FHR Overview for DOE Nuclear Energy Advisory Committee."

http://energy.gov/sites/prod/files/2013/06/f1/FHRIRPPerPeterson_0.pdf

"Nuclear afterburner"

Allow gas co-firing to meet peak demand

Always meet baseline demand anyway

Fusion Systems: Tokamak

Slide courtesy of C. French, E. Sykora, V. Winters. 22.033 Design Project. 27 September 2013

$$^{2}H + ^{3}H \rightarrow \alpha + n + 17.59 MeV$$

- Magnetic Confinement
- 800 million degrees Kelvin
- ~14 MeV neutrons
- Alpha heating
- Scaling
- Stability Issues
- 27 tokamaks in operation

Figure above: The electromagnetic coil set-up of JET (Joint European Torus). **Source:** http://www.efda.org/2011/09/tokamak-principle-2

© EUROfusion Consortium Research Institutions. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Fusion Systems: Stellarator

Slide courtesy of C. French, E. Sykora, V. Winters. 22.033 Design Project. 27 September 2013

- Complicated magnetic configuration
 - Difficult maintenance, expensive
- No large externally driven current
 - Inherently steady state
 - Resistant to disruptions
- Comparable in size to Tokamak power plant

Above: A conceptual view of the W7-X stellarator, set to make its first plasma in 2014. Shown in blue is the magnetic field coils. **Source**: http://newenergyandfuel.com/wp-content/uploads/2008/03/stellarator-cutaway-view.jpeg

© Max-Plank Institut fur Plasmaphysics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Fusion Systems: Spherical Tokamak

Slide courtesy of C. French, E. Sykora, V. Winters. 22.033 Design Project. 27 September 2013

- Similar to tokamak, but low aspect ratio
- Allows for more energy generation in a compact size (R=3.4m vs. R_{tokamak}=9.55m)
- Material concerns
- Not as well understood-poorer performance
- Central solenoid can be removed for maintenance [2]

Figure above: A basic design of the spherical tokamak system. **Source:** http://www.plasma.inpe.br/LAP_Portal/LAP_Site/Figures/ETE_3D_Schematic.gif

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Fusion Systems: Spheromak

Slide courtesy of C. French, E. Sykora, V. Winters. 22.033 Design Project. 27 September 2013

- No external magnetic coils required to link fusion plasma through central axis
- Confinement fields generated primarily by plasma current
- High power density
- Simply connected geometry
 - Order of magnitude lower volume and area than the Tokamak

Above: Schematic of the Spheromak design. **Source:** http://icc2006.ph.utexas.edu/uploads/177/icc2006_reconnection.pdf

© B. Hudson et al, Phys. Plasmas 15, 056112 (2008). All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Fusion Systems: Inertial Confinement

Slide courtesy of C. French, E. Sykora, V. Winters. 22.033 Design Project. 27 September 2013

- Great power performanceclosest to ignition
- Takes up large area because of powerful lasers and remanufacturing plant
- More activated material to dispose of
- Remanufacturing plant will take away some of potential electrical energy

Figure above: Schematic of how to heat up fuel pellet. Lasers reflect of walls of hohlraum for even heating. **Source:** https://lasers.llnl.gov/for_users/images/energetics_01.jpg

Courtesy of Lawrence Livermore National Laboratory. License CC BY-NC-SA.

Fusion Systems: Z-Pinch

Slide courtesy of C. French, E. Sykora, V. Winters. 22.033 Design Project. 27 September 2013

courtesy of NASA.

- Inertial Confinement
- Application of Lorentz Force
- Large capacitor dumps energy into plasma
- Billions of kelvin
- Reloading time
- Few produced

Figure above: Advanced space propulsion on a flow stabilized Z-Pinch device **Source:** FUSION PROPULSION Z-PINCH ENGINE CONCEPT, J. Miernik et al., Advanced Concepts Office, Marshall Space Flight Center

Courtesy of DOE.

Figure above: 1000 TW LTD-based

z-pinch accelerator Source: http://en.wikipedia.org/wiki/

File:Petawatt LTD z pinch.png

MIT OpenCourseWare https://ocw.mit.edu

22.01 Introduction to Nuclear Engineering and Ionizing Radiation Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.