Slides for Nuclear Mass and Stability

2024

22.01 – Intro to Ionizing Radiation

Let's Agree on Notation

 $_{Z}^{A}Name^{\pm q}$

A – Atomic mass (number of nucleons)

Z – Atomic number (number of protons)

q – Charge (zero if not an ion)

${}^{10}_{5}B + {}^{1}_{0}n \rightarrow {}^{7}_{3}Li + {}^{4}_{2}He + Q$

is the same as...

 $^{10}B(n,\alpha)$ ⁷*Li*

An Aside: Boron Neutron Capture Therapy (BNCT)

22.01 - Intro to Ionizing Radiation

© Sumitomo Heavy Industries, Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Explaining BNCT

- Why 30MeV
 - Look up (p,n) cross sections on JANIS
- Why beryllium?
 - Think about nuclear reactions
- How does the boron only get into cancer cells?
 - Think about the "blood/brain barrier"
- Why was boron selected for the therapy?
 - Think about range and energy loss of radiation

Reading the KAERI Table

© INSPIRE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

16-S-32basicn-XSsummaryXS graphs

<u>element</u>

16-sulfur-32

- Atomic Mass: 31.9720707 +- 0.0000001 amu
- Excess Mass: -26015.981 +- 0.112 keV
- Binding Energy: 271780.656 +- 0.120 keV
- Beta Decay Energy: B- -12685.287 +- 6.782 keV

"The 1995 update to the atomic mass evaluation" by G.Audi and A.H.Wapstra, Nuclear Physics A595 vol. 4 p.409-480, December 25, 1995.

- Atomic Percent Abundance: 95.02%
- Spin: 0+
- Stable Isotope
- Possible parent nuclides: Beta from P-32 Electron capture from C1-32 EC + P from Ar-33

R.R.Kinsey, et al., *The NUDAT/PCNUDAT Program for Nuclear Data*, paper submitted to the 9 th International Symposium of Capture-Gamma_raySpectroscopy and Related Topics, Budapest, Hungary, Octover 1996.Data extracted from NUDAT database (Jan. 14/1999)

22.01 - Intro to Ionizing Radiation

Explaining Terms

- <u>Atomic mass</u>
- 1 AMU = 931.49 MeV
 - Excess mass

1 amu	1.660540 x 10 ⁻²⁷ kg	1.000 u	931.49 MeV/c ²
neutron	1.674929 x 10 ⁻²⁷ kg	1.008664 u	939.57 MeV/c ²
proton	1.672623 x 10 ⁻²⁷ kg	1.007276 u	938.28 MeV/c ²
electron	9.109390 x 10 ⁻³¹ kg	0.00054858 u	0.511 MeV/c²

 $\Delta = M - A$ What does "excess mass" really mean?

• <u>Binding energy</u>

 $B(A, Z) \equiv [ZM_H + NM_n - M(A, Z)]c^2$

22.01 – Intro to Ionizing Radiation

Let's Try Some Examples

Calculate the binding energy of:

³²S

33S

48S

22.01 - Intro to Ionizing Radiation

Nuclear Reaction Energies

Let's look at BNCT again...

How do we find Q?

Conserve mass and energy, of course!

 ${}^{10}_{5}B + {}^{1}_{0}n \rightarrow {}^{7}_{3}Li + {}^{4}_{2}He + Q$

22.01 – Intro to Ionizing Radiation

Binding Energy Curve

http://ictwiki.iitk.ernet.in/wiki/index.php/The_LDM_a nd_Semi-empirical_Mass_formula

© Monika Patial & Dr. A.K. Jain. License CC BY-NC-ND. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

22.01 – Intro to Ionizing Radiation

Binding Energy Curve

http://ictwiki.iitk.ernet.in/wiki/index.php/The_LDM_a nd_Semi-empirical_Mass_formula

© Monika Patial & Dr. A.K. Jain. License CC BY-NC-ND. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

22.01 - Intro to Ionizing Radiation

Binding Energy Curve

http://ictwiki.iitk.ernet.in/wiki/index.php/The_LDM_a nd_Semi-empirical_Mass_formula

© Monika Patial & Dr. A.K. Jain. License CC BY-NC-ND. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

22.01 – Intro to Ionizing Radiation

The Liquid Drop Mass Formula

Also called the "semi-empirical mass formula"

Derive and explain on the board

Semi-Empirical Mass Formula

$$B(A, Z) = a_v A - a_s A^{2/3} - a_c \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta$$
(4.10)

 $\frac{a_v}{16} \quad \frac{a_s}{18} \quad \frac{a_c}{0.72} \quad \frac{a_a}{23.5} \quad \frac{a_p}{11} \quad \text{MeV} = -\frac{a_p}{\sqrt{A}} \quad \text{even-even nuclei}$ $\frac{\delta = \frac{a_p}{\sqrt{A}} \quad \text{even-even nuclei}}{\frac{16}{\sqrt{A}} \quad \frac{18}{\sqrt{A}} \quad \frac{11}{\sqrt{A}} \quad \frac{11}{\sqrt{A}$

Stability Trends

22.01 – Intro to Ionizing Radiation

Stability Trends

Image by MIT OpenCourseWare.

22.01 - Intro to Ionizing Radiation

Stability Trends

22.01 - Intro to Ionizing Radiation

Mass Parabolas – Plotting Stability

22.01 – Intro to Ionizing Radiation

An Island of Stability?

Y. T. Oganessian, K. P. Rikaczewski. Physics Today, 32-38 (Aug. 2015).

squares mark stable isotopes. Magic proton and neutron numbers.

Figures © AIP Publishing LLC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

22.01 - Intro to Ionizing Radiation

(Courtesy of Witold Nazarewicz).

at which nuclei have enhanced stability, are indicated by red lines.

The star labeled SHE indicates the region of superheavy elements.

An Island of Stability?

Y. T. Oganessian, K. P. Rikaczewski. Physics Today, 32-38 (Aug. 2015).

How are superheavy elements synthesized?

excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>.

Figure 4. The Dubna gas-filled recoil separator is outfitted with a dipole bending magnet (D) and two ionfocusing quadrupole magnets (Q) to select and guide the superheavy recoils (red) from collisions between calcium-48 projectiles (blue) and a rotating actinide target to a set of detectors. The inset shows the detector station with two time-offlight detectors and silicon-stack detectors. (Adapted from Y. T. Oganessian et al., *Phys. Rev. C* **83**, 054315, 2011.)

August 2015 Physics Today 35

22.01 – Intro to Ionizing Radiation

An Island of Stability?

Y. T. Oganessian, K. P. Rikaczewski. Physics Today, 32-38 (Aug. 2015).

22.01 - Intro to Ionizing Radiation

22.01 Introduction to Nuclear Engineering and Ionizing Radiation Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.