22.01 - Recitation #2

- Please grab a snack, get up off the sofa, look at something that isn't a screen for 5 mins!
- Please turn on your video (if possible) and mute yourself.
- These slides are at: bit.ly/2201Rec2
- PollEv.com/charleshirst189

Binding energy, Excess Mass, Semi Empirical Mass Formula. Any questions?

Outline + Intended Learning Outcomes (ILOs)

Review equations:

Energy = matter

Excess mass

Binding energy

Use equations:

Excess mass

Binding energy

 Be able to calculate the excess mass and binding energy for a chosen isotope.

Review equations

Switch to Ipad...

© Nickelodeon. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Explaining Terms

Atomic mass

Excess mass

$$\Delta = M - A$$

electron 9.109390 x 10⁻³¹ kg 0.00054858 u 0.511 MeV/c²

What does "excess mass" really mean?

Binding energy

$$B(A, Z) \equiv [ZM_H + NM_n - M(A, Z)]c^2$$

Semi-Empirical Mass Formula

$$B(A, Z) = a_v A - a_s A^{2/3} - a_c \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta$$
 (4.10)

$$a_v$$
 a_s a_c a_a a_p $\delta = a_p/\sqrt{A}$ even-even nuclei $= 0$ even-odd, odd-even nuclei $= -a_p/\sqrt{A}$ odd-odd nuclei

Switch to Ipad...

© Nickelodeon. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Using equations x2

 $\frac{263}{104}Rf$

What is the excess mass energy?

 $Rf-263 \text{ mass} = 263.112540 \pm 0.000198 \text{ amu}$

Neutron mass = 1.008665 amu

Proton mass = 1.007276 amu

Conversion factor = 931.49 MeV/c^2

What is the binding energy?

Outline + Intended Learning Outcomes (ILOs)

Review equations:

Energy = matter

Excess mass

Binding energy

Use equations:

Excess mass

Binding energy

 Be able to calculate the excess mass and binding energy for a chosen isotope.

22.01 - Recitation #2

Questions?

Piazza

Please grab a snack, get up off the sofa, look at something that isn't a screen for ~X mins!

MIT OpenCourseWare https://ocw.mit.edu

22.01 Introduction to Nuclear Engineering and Ionizing Radiation Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.