22.01 - Recitation #3

- Please grab a snack, get up off the sofa, look at something that isn't a screen for 5 mins!
- Please turn on your video (if possible) and mute yourself.
- These slides are at: <u>bit.ly/2201Rec3</u>

Outline + Intended Learning Outcomes (ILOs)

Decay processes

Decay particle energies

Semi-Empirical Mass Formula (SEMF)

Decay	Individual Particle Reaction	Full Nuclear Reaction
Alpha	а	${}^{A}_{Z}X_{N} \longrightarrow {}^{A-4}_{Z-2}X'_{N-2} + \alpha$
Beta -	$n \rightarrow p + e^- + \bar{\nu}$	$^{A}_{Z}X_{N} \rightarrow ^{A}_{Z+1}X'_{N-1} + e^{-} + \bar{\nu}$
Beta +	$p \rightarrow n + e^+ + \nu$	$^{A}_{Z}X_{N} \rightarrow ^{A}_{Z-1}X'_{N+1} + e^{+} + \nu$
Electron Capture	$p+e^- \rightarrow n+ u$	${}^A_Z X_N + e^- \rightarrow {}^A_{Z-1} X'_{N+1} + \nu$
Gamma (IT)	¥	${}^A_Z X^* \to^A_Z X + \gamma$
Internal Conversion	e	${}^A_Z X^* \to^A_Z X + e^-$

Decay	Individual Particle Reaction	Full Nuclear Reaction
Alpha	а	${}^{A}_{Z}X_{N} \longrightarrow {}^{A-4}_{Z-2}X'_{N-2} + \alpha$
Beta -	$n \rightarrow p + e^- + \bar{\nu}$	$^{A}_{Z}X_{N} \rightarrow ^{A}_{Z+1}X'_{N-1} + e^{-} + \bar{\nu}$
Beta +	$p \rightarrow n + e^+ + \nu$	$^{A}_{Z}X_{N} \rightarrow ^{A}_{Z-1}X'_{N+1} + e^{+} + \nu$
Electron Capture	$p+e^- \rightarrow n+ u$	${}^A_Z X_N + e^- \rightarrow {}^A_{Z-1} X'_{N+1} + \nu$
Gamma (IT)	¥	${}^A_Z X^* \to^A_Z X + \gamma$
Internal Conversion	e	$^{A}_{Z}X^{*} \rightarrow^{A}_{Z}X + e^{-}$
	X-ray or Auger electron	N/A

Decay Processes

Energy spectra

Beta:

$${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z+1}X'_{N-1} + e^{-} + \bar{\nu}$$

β⁻ rays:

1/2+

p rays.			
Max. E (keV)	Avg. E (keV)	Intensity (rel)	Spin 1/2+
1215.1(-)	442.9(5)	82.2(4)	1/2-
848.7(-)	289.7(4)	1.16(2)	3/2-
686.3(-)	225.5(4)	0.057(3)	3/2-
437.2(-)	133.2(4)	16.4(3)	1/2+
353.7(-)	104.4(4)	0.146(5)	3/2(-)
228.7(-)	63.9(4)	0.012(1)	(3/2)-
215.9(-)	60.0(3)	0.111(3)	3/2+
185.6(-)	50.8(3)	0.0019(4)	3/2+
158.9(-)	42.9(3)	0.0021(4)	(3/2-)

...

Energy spectra

Gamma:

$${}^{A}_{Z}X^{*} \rightarrow^{A}_{Z}X + \gamma$$

...

...

Energy spectra

Internal conversion:

...

Semi-Empirical Mass Formula

$$B(A, Z) = a_v A - a_s A^{2/3} - a_c \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta$$
(4.10)

$$\frac{a_v}{16} \quad \frac{a_s}{18} \quad \frac{a_c}{0.72} \quad \frac{a_a}{23.5} \quad \frac{a_p}{11} \quad \text{MeV} \qquad \frac{\delta = a_p/\sqrt{A}}{= 0} \quad \text{even-even nuclei} \\ = 0 \quad \text{even-odd, odd-even nuclei} \\ = -a_p/\sqrt{A} \quad \text{odd-odd nuclei} \end{cases}$$

Outline + Intended Learning Outcomes (ILOs)

Decay processes

Decay particle energies

Semi-Empirical Mass Formula (SEMF)

22.01 - Recitation #3

Office Hour 3-4pm Monday

Questions?

Please grab a snack, get up off the sofa, look at something that isn't a screen for ~X mins!

22.01 Introduction to Nuclear Engineering and Ionizing Radiation Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.