22.01 - Recitation #6

- Please grab a snack, get up off the sofa, look at something that isn't a screen for 5 mins!
- Please turn on your video (if possible) and mute yourself.
- These slides are at: bit.ly/2201Rec6

Outline + Intended Learning Outcomes (ILOs)

Everything...

 Start the process of remembering what you learnt 5 weeks ago!

Explaining Terms

•	Atomic mass		
	_		

1 amu neutron

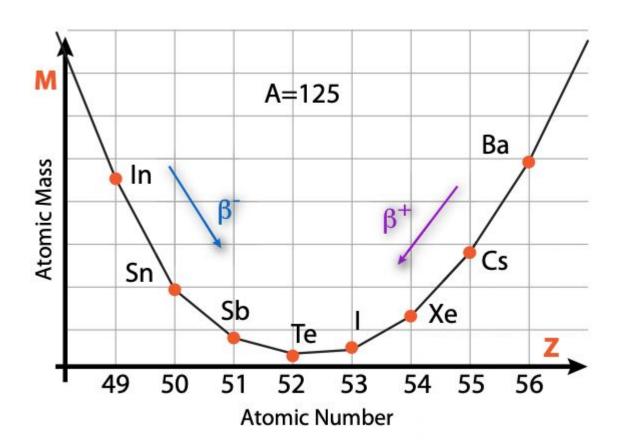
proton electron

Excess mass

What does "excess mass" really mean?

· Binding energy

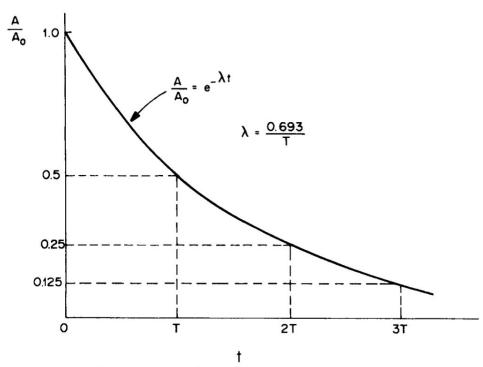
$$B(A, Z) \equiv$$



	Decay	Individual Particle Reaction	Full Nuclear Reaction
$\left\{ \begin{array}{c} 1 \\ \end{array} \right.$	Alpha	а	
	Beta -		${}_{Z}^{A}X_{N} \rightarrow {}_{Z+1}^{A}X_{N-1}' + e^{-} + \bar{\nu}$
	Beta +		${}_{Z}^{A}X_{N} \rightarrow {}_{Z-1}^{A}X_{N+1}' + e^{+} + \nu$
	Electron Capture		${}_{Z}^{A}X_{N} + e^{-} \rightarrow {}_{Z-1}^{A}X_{N+1}' + \nu$
	Gamma (IT)	Y	
	Internal Conversion	e ⁻	
	•••		N/A

Semi-Empirical Mass Formula

$$B(A, Z) = \tag{4.10}$$



Activity

$$A\left(t\right) = A_0 e^{-\lambda t}$$

$$t_{1/2} = \ln\left(2\right)/\lambda$$

Fig. 4.1 Exponential radioactivity decay law, showing relative activity, A/A_0 , as a function of time t; λ is the decay constant and T the half-life.

Burning isotopes in a reactor

1kg of Fe-55 is put into a reactor with thermal flux = 1E14 [n/cm²/s]

• What is the removal rate of Fe-55?

[atoms/s]

• How much Fe-55 will there be after 1 year?

[kg]

22.01 - Recitation #6

Review 4-5pm Today

Office Hours 8-8.45am Monday

Office Hours 3-4pm Tuesday

Questions?

Please grab a snack, get up off the sofa, look at something that isn't a screen for ~X mins!

MIT OpenCourseWare https://ocw.mit.edu

22.01 Introduction to Nuclear Engineering and Ionizing Radiation Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.