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The Three Challenge Problems
�

Heat exchanger (Hx) design 
Heat transport 
Heat storage (if necessary) 

MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 
22.033/22.33 – Nuclear Design Course Page 2 

http:22.033/22.33


   

  

 

 

First, Some Nomenclature
�

Sensible heating – temperature change 
.
�

Q = m c p Δ T 
Latent heating – phase change 

. 
Q = m h fg 

Bond energy storage – enthalpy of chemical 
reactions 
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Where Do We Find Them?
�

Courtesy of the Generation IV International Forum. Used with permission.

Source: http://www.gen-4.org/Technology/systems/gfr.htm 
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Heat Exchangers – Fundamental 
Parameters 

Hx effectiveness (ε) 
– Measures how 

much heat is 
transferred 
compared to how 
much is possible 

ε=1 is ideal, but 
© American Institute of Physics. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. practically 

Source: Dean Bartlett.  “The Fundamentals of Heat 
Exchangers”  The Industrial Physicist, AIP, p. 20 (1996) 

impossible (big Hx) 
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Heat Exchangers – Fundamental 
Parameters 

Diagram of heat exchanger removed due to copyright restrictions. See lecture video for details.

***Source: Ramesh K. Shah, Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & 
Sons, Inc.  p. 102 (2003). 
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Heat Exchangers – Fundamental 
Parameters 

Q = U·A·F·ΔTlm 

Q = Heat transfer rate (W)
�
U = Thermal conductance (W/m2K)
�
A = Heat transfer area (m2)
�
ΔTlm = Log mean temperature difference (K)
�

F = Factor (for flow configuration) 
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Heat Exchangers – Log Mean 
Temperature Difference (LMTD) 

( Δ TH − Δ TC )Δ T = lm 

ln 
⎛ Δ TH ⎞ 
⎜ ⎟ 
⎝ Δ TC ⎠ 

LMTD is a good measure of the effectiveness of simlar heat
�
exchangers of different designs
�

Often, LMTD (counter flow) > LMTD (parallel flow)
�
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Heat Exchangers – Finding Key 
Parameters 

Figure 1 – A big,  
complicated heat
�
exchanger chart
�

Source: Wolverine Tube Heat Transfer 
Data Book, p. 93 (2001), accessed at 

http://www.wlv.com/products/databook 
/ch2_5.pdf 

Courtesy of Wolverine Tube, Inc. Used with permission.
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Heat Exchangers – Fundamental 
Parameters 

For all flow configurations  

Hx is “balanced” when C* = 1 

NTU = Number of Transfer Units  
© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

***Source: Ramesh K. Shah, Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & 
Sons, Inc.  p. 116, 118-119 (2003). 
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Hx Flow Types
�

***After Ramesh K. Shah & Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & 
Sons, Inc. (2003). 
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Heat Exchanger Classification by 
Flow Arrangement
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   Parallel Flow vs. Counterflow
�

See  http://www.engineeringtoolbox.com/arithmetic-logarithmic-mean-temperature-d_436.html 
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Hx Flow Configurations
�

After Ramesh K. Shah, Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & 
Sons, Inc. (2003). 
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Tubular Extended surface Regenerative

Heat Exchanger Classification by Construction
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Image by MIT OpenCourseWare.
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   Hx Flow Configurations - Tubular
�

Source:  Wikimedia Commons 

Courtesy of Wikipedia User:H Padleckas. Used with permission. Courtesy of Harlan Bengtson. Used with permission.
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Hx Flow Configurations – Plate 
Plate (brazed) type Spiral type 

© Alfa Biz Limited. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

Source: http://www.alfa-biz.com/Gasketed-Plate-Heat-Exchanger.asp Source: http://www.hiwtc.com/photo/products/16/02/14/21470.jpg 
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Hx Heat Transfer Mechanisms
�

Other design parameters should largely 
determine this choice 

After Ramesh K. Shah, Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & 
Sons, Inc. (2003). 
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Heat Exchanger Classification by 
Heat Transfer Mechanism

Single-phase convection
on both sides

Single-phase convection
on one side, two-phase
convection on other side

Combined convection and
radiative heat transfer

Two-phase convection 
on both sides

Image by MIT OpenCourseWare.
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Heat Exchangers - Questions
�

What type to use?
�
What working fluids?
�
What geometry?  Flow considerations?  Laminar or
�

turbulent? 
Where is the tradeoff between cost & performance? 
Materials concerns? 
See also: T. Kuppan. “Heat exchanger design handbook.” 

and Som, “Introduction To Heat Transfer. 
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Heat Transport
�

Main problem: Get process heat from the 
reactor to the hydrogen & biofuels plants 

How?  Must consider: 
– Temperatures 
– Losses 
– Flow rates 
– Flow transients 
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Heat Transport – Long Distance
�

How to model it? 
– Thermal resistances 
– FEM 
– Loop analysis 

How to pump it? Forced? Gravity? 
Distance from Rx to H2, biofuel plant is one 

of the most important parameters 
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Heat Transport - Questions
�

What are the constraints? (TH-Rx ) , TC-H2, TC-bio

How far does the heat have to go? 
Where to take the heat from? 
How to transport it? 
How to model it?  What/where are losses? 
Should some of it be stored... 
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Heat Storage
�

Heat storage is a way to balance out load 
instabilities (capacitive effect) 

– Store some heat to run turbines and/or 
product factories during transients 

– Can help avoid or delay plants load-
dumping or load-following 

Must balance benefits gained vs. heat lost by 
storage 
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Heat Storage – Electrical Analogy
�
Source Load, losses 
switch (transport,  

dissipative,  
hydraulic)
�

Reactor Heat storage 
system Power (current) 

Courtesy of Prof. Eric C. Toolson. Used with permission.

Image source: http://www.unm.edu/~toolson/rc_circuit.html 
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Heat Storage Technologies
�

Sensible heat storage 
– Simply apply hot fluid to a material, reverse 

flow when required 
Latent heat storage 

– Uses phase change materials (PCMs)
�
– Dependent on melting point, heat of fusion 

Bond energy storage 
– Dependent on reaction temperature, enthalpy 

MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 
22.033/22.33 – Nuclear Design Course Page 23 

http:22.033/22.33


Heat Storage – Sensible Heat  

Example:  Hot gas on alumina fluidized bed  

Source: R. Shinnar et al. “A novel storage method for  
concentrating solar power plants allowing operation at high temperature.” DoE Presentation, Boulder, CO (2011).  
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Heat Storage – Sensible Heat
�

Other proposed & demonstrated storage
�
media:  Molten salt, concrete 

© NREL. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

Thermocline test at Sandia National Laboratories 

Concrete TES at U. Stuttgart 
See http://www.nrel.gov/csp/troughnet/thermal_energy_storage.html 
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Heat Storage – Phase Change 
Materials 

More compact 
Layout can be more 

Source: M. Demirbas. complicated 
“Thermal Energy Storage 

.” 
 

and Phase Change 
Materials: An Overview

Salts can be corrosive 
Energy Sources, Part B,
1:85–95, 2006. Graphite foils have 

been used to  
improve heat  
spreading  
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Heat Storage – Bond Energy
�

Absorb/Release chemical energy by shifting 
chemical equilibrium reactions 

– Change temperature, pressure 
– Examples: hydration, hydriding, 

ammonia/salt reactions 
– Chemical reaction should be reversible 
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Heat Storage – Questions
�

What temperature(s) is/are required?
�
What materials to use?
�
What capacity to use? (kWh, MWh, Gwh)
�
How does cost scale with size?
�
What are loss rates & pathways?
�
When would it be used, if at all?
�
Where would it be located?
�
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