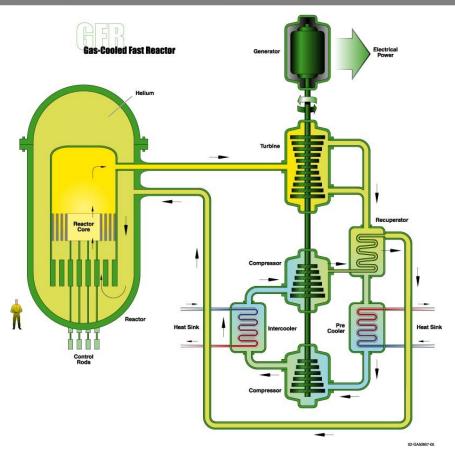
Process Heat Group Major Challenges

Lecture 2 22.033/22.33 – Nuclear Engineering Design Project September 14, 2011

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

The Three Challenge Problems

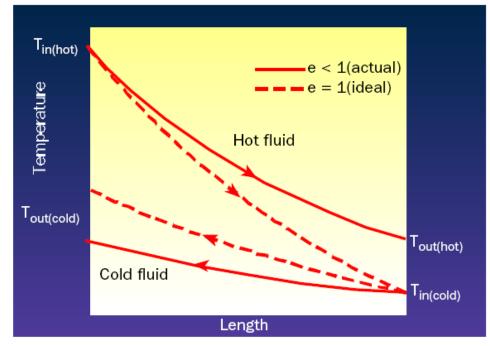
Heat exchanger (Hx) design Heat transport Heat storage (if necessary)


MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

First, Some Nomenclature

Sensible heating – temperature change $Q = mc_p \Delta T$ Latent heating – phase change $Q = mh_{fg}$ Bond energy storage – enthalpy of chemical reactions

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course


Where Do We Find Them?

Courtesy of the Generation IV International Forum. Used with permission.

Source: http://www.gen-4.org/Technology/systems/gfr.htm

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

© American Institute of Physics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Source: Dean Bartlett. "The Fundamentals of Heat Exchangers" *The Industrial Physicist*, AIP, p. 20 (1996)

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Hx <u>effectiveness</u> (ϵ)

 Measures how much heat is transferred compared to how much is possible

ε=1 is ideal, but ^{ur} practically impossible (big Hx)

Diagram of heat exchanger removed due to copyright restrictions. See lecture video for details.

***Source: Ramesh K. Shah, Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & Sons, Inc. p. 102 (2003).

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

$$\mathbf{Q} = \mathbf{U} \cdot \mathbf{A} \cdot \mathbf{F} \cdot \Delta \mathbf{T}_{lm}$$

- Q = Heat transfer rate (W)
- U = Thermal conductance (W/m^2K)
- A = Heat transfer area (m^2)
- ΔT_{lm} = Log mean temperature difference (K)

F = Factor (for flow configuration)

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Exchangers – Log Mean Temperature Difference (LMTD)

$$\Delta T_{lm} = \frac{\left(\Delta T_H - \Delta T_C\right)}{\ln\left(\frac{\Delta T_H}{\Delta T_C}\right)}$$

LMTD is a good measure of the effectiveness of simlar heat exchangers of different designs

Often, LMTD (counter flow) > LMTD (parallel flow)

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Exchangers – Finding Key Parameters

Figure 1 – A big, complicated heat exchanger chart

Source: Wolverine Tube Heat Transfer Data Book, p. 93 (2001), accessed at http://www.wlv.com/products/databook /ch2_5.pdf

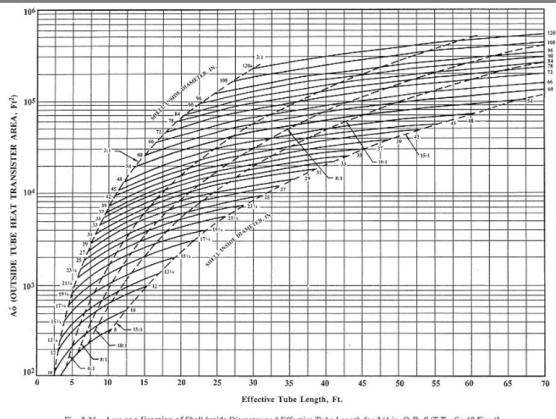


Fig. 2.26 Area as a Function of Shell Inside Diameter and Effective Tube Length for 3/4 in. O.D. S/T Trufin 19 Fins/In. on 15/16 in. Equilateral Triangular Tube Layout Fixed Tube Sheet, One Tubeside Pass, Fully Tubed Shell.

Courtesy of Wolverine Tube, Inc. Used with permission.

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

$$\varepsilon = \frac{C_h(T_{h,i} - T_{h,o})}{C_{\min}(T_{h,i} - T_{c,i})} = \frac{C_c(T_{c,o} - T_{c,i})}{C_{\min}(T_{h,i} - T_{c,i})}$$
For all flow configurations
$$C^* = \frac{C_{\min}}{C_{\max}} = \frac{(\dot{m}c_p)_{\min}}{(\dot{m}c_p)_{\max}} = \begin{cases} (T_{c,o} - T_{c,i})/(T_{h,i} - T_{h,o}) & \text{for } C_h = C_{\min} \\ (T_{h,i} - T_{h,o})/(T_{c,o} - T_{c,i}) & \text{for } C_c = C_{\min} \end{cases}$$
Hx is "balanced" when C* = 1

$$NTU = \frac{UA}{C_{\min}} = \frac{1}{C_{\min}} \int_{A} U \, dA$$

NTU = Number of Transfer Units

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

***Source: Ramesh K. Shah, Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & Sons, Inc. p. 116, 118-119 (2003).

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Hx Flow Types

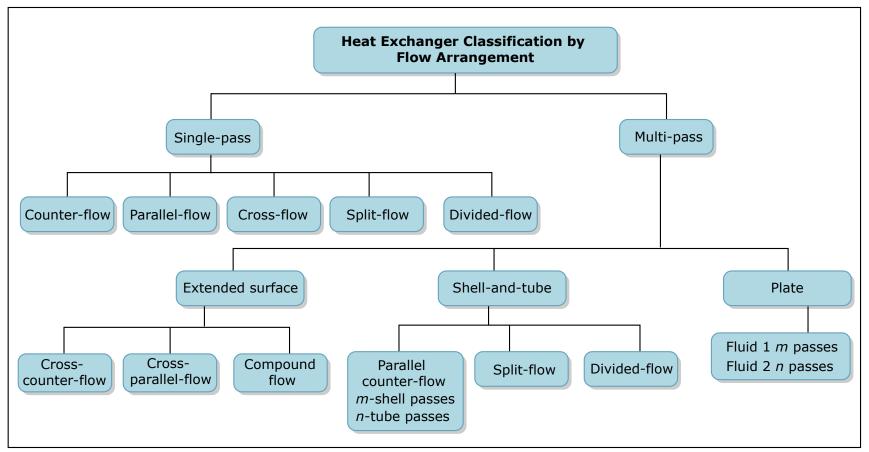


Image by MIT OpenCourseWare.

***After Ramesh K. Shah & Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & Sons, Inc. (2003).

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Parallel Flow vs. Counterflow

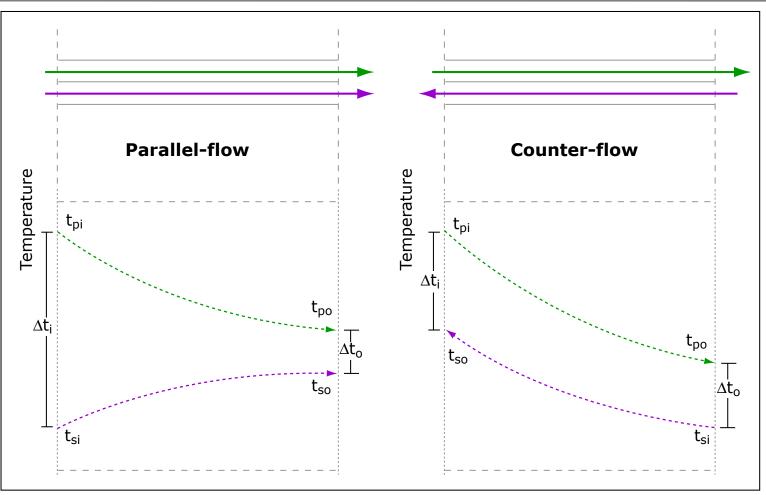


Image by MIT OpenCourseWare.

See http://www.engineeringtoolbox.com/arithmetic-logarithmic-mean-temperature-d_436.html

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Hx Flow Configurations

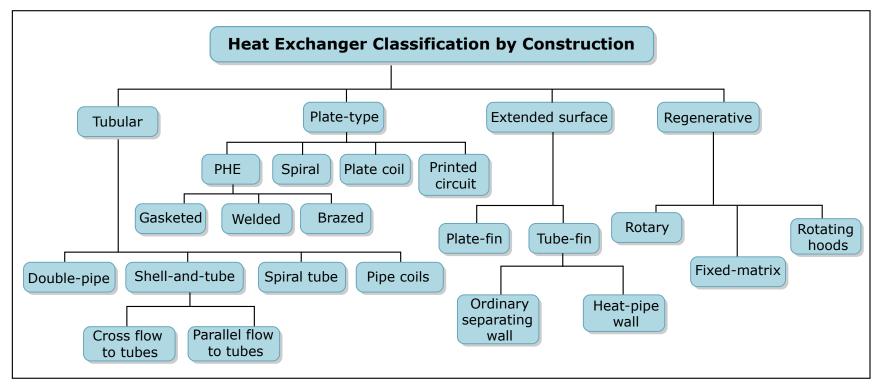
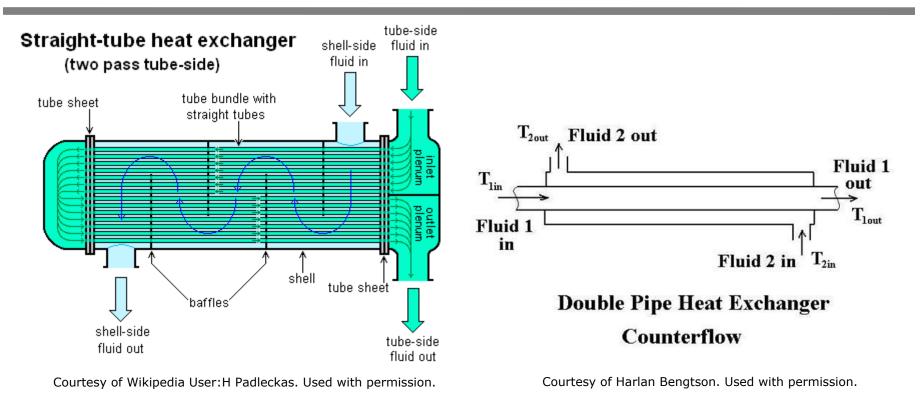
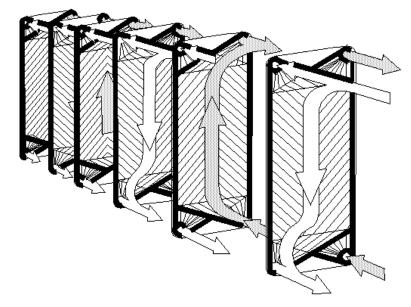



Image by MIT OpenCourseWare.

After Ramesh K. Shah, Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & Sons, Inc. (2003).

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Hx Flow Configurations - Tubular



ering Dr. Michael P. Short, 2011 Page 14

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Hx Flow Configurations – Plate

Plate (brazed) type

© Alfa Biz Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Source: http://www.alfa-biz.com/Gasketed-Plate-Heat-Exchanger.asp

Spiral type

© Jooshgostar Equipments Manufacturing Company (JEMCO). All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Source: http://www.hiwtc.com/photo/products/16/02/14/21470.jpg

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Hx Heat Transfer Mechanisms

Other design parameters should largely determine this choice

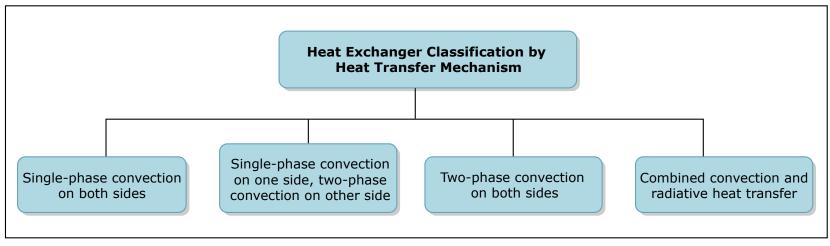


Image by MIT OpenCourseWare.

After Ramesh K. Shah, Dusan P. Sekulic. Fundamentals of Heat Exchanger Design. John Wiley & Sons, Inc. (2003).

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Exchangers - Questions

What type to use?

- What working fluids?
- What geometry? Flow considerations? Laminar or turbulent?
- Where is the tradeoff between cost & performance?

Materials concerns?

See also: T. Kuppan. "Heat exchanger design handbook." and Som, "Introduction To Heat Transfer.

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Transport

Main problem: Get process heat from the reactor to the hydrogen & biofuels plants

How? Must consider:

- Temperatures
- Losses
- Flow rates
- Flow transients

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Transport – Long Distance

How to model it?

- Thermal resistances
- FEM
- Loop analysis

How to pump it? Forced? Gravity? Distance from Rx to H_2 , biofuel plant is one of the most important parameters

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

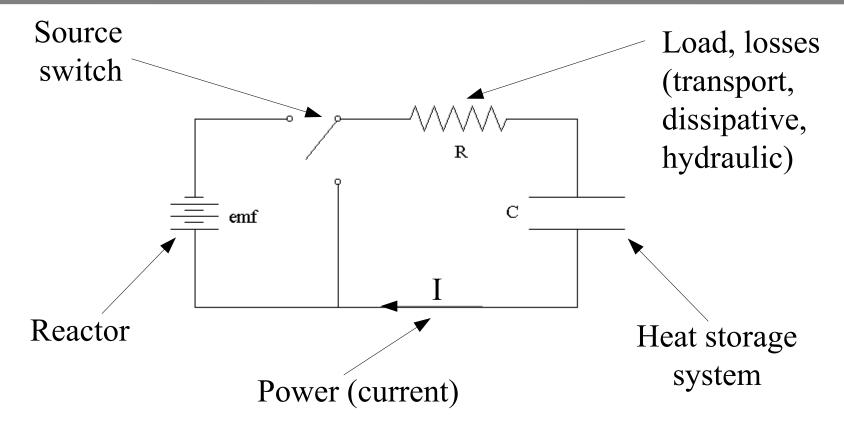
Heat Transport - Questions

What are the constraints? $(T_{H-Rx}, T_{C-H2}, T_{C-bio})$ How far does the heat have to go? Where to take the heat from? How to transport it? How to model it? What/where are losses? Should some of it be stored...

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Storage

Heat storage is a way to balance out load instabilities (capacitive effect)


Store some heat to run turbines and/or product factories during transients

 Can help avoid or delay plants loaddumping or load-following

Must balance benefits gained vs. heat lost by storage

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Storage – Electrical Analogy

Courtesy of Prof. Eric C. Toolson. Used with permission.

Image source: http://www.unm.edu/~toolson/rc_circuit.html

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

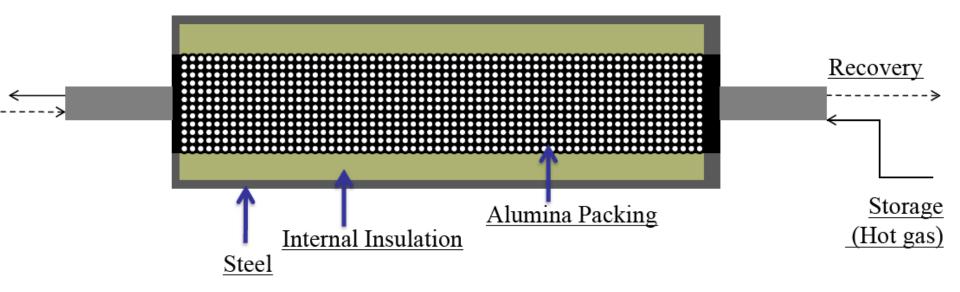
Heat Storage Technologies

Sensible heat storage

Simply apply hot fluid to a material, reverse flow when required

Latent heat storage

- Uses phase change materials (PCMs)
- Dependent on melting point, heat of fusion

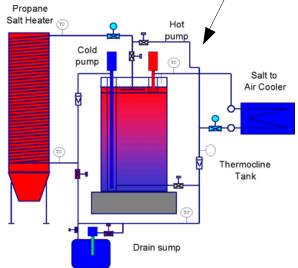

Bond energy storage

- Dependent on reaction temperature, enthalpy

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Storage – Sensible Heat

Example: Hot gas on alumina fluidized bed


© Prof. Reuel Shinnar. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Source: R. Shinnar et al. "A novel storage method for concentrating solar power plants allowing operation at high temperature." DoE Presentation, Boulder, CO (2011).

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Storage – Sensible Heat

Other proposed & demonstrated storage media: Molten salt, concrete

© NREL. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Thermocline test at Sandia National Laboratories

© Sandia National Labs. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Concrete TES at U. Stuttgart

See http://www.nrel.gov/csp/troughnet/thermal_energy_storage.html

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Storage – Phase Change Materials

	Melting temperature and heat of fusion of inorganic substances with potential use as a PCM		
	Compound	Melting temperature (K)	Heat of fusion (kJ/kg)
Source: M. Demirbas. "Thermal Energy Storage and Phase Change Materials: An Overview." <i>Energy Sources, Part B</i> , 1:85–95, 2006.	H ₂ O LiClO ₃ ·3H ₂ O KF·4H ₂ O Mn(NO ₃) ₂ ·6H ₂ O CaCl ₂ ·6H ₂ O	273.2 281.3 291.7 299.0 302.2	333 253 231 125.9 190.8
	$\begin{array}{l} LiNO_{3}\cdot 3H_{2}O \\ Na_{2}SO_{4}\cdot 10H_{2}O \\ Zn(NO_{3})_{2}\cdot 6H_{2}O \\ Na_{2}CO_{3}\cdot 10H_{2}O \end{array}$	303.2 305.6 309.2 307.2	296 254 246.5 146.9
	$\begin{array}{l} CaBr_{2}{\cdot}6H_{2}O \\ Na_{2}HPO_{4}{\cdot}12H_{2}O \\ Na_{2}S_{2}O_{3}{\cdot}5H_{2}O \\ Na(CH_{3}COO){\cdot}3H_{2}O \end{array}$	303.2 308.7 321.2 331.2	115.5 265 201 264
	$\begin{array}{l} Na_2P_2O_7 \cdot 10H_2O \\ Ba(OH)_2 \cdot 8H_2O \\ Mg(NO_3)_2 \cdot 6H_2O \\ (NH_4)Al(SO_4) \cdot 6H_2O \end{array}$	343.2 351.2 362.2 368.2	184 265.7 162.8 269
	MgCl ₂ ·6H ₂ O NaNO ₃ KNO ₃ KOH	390.2 580.2 606.2 653.2	168.6 172 266 149.7
	MgCl ₂ NaCl Na ₂ CO ₃	987.2 1073.2 1127.2	452 492 275.7
	KF K ₂ CO ₃	1130.2 1170.2	452 235.8

More compact Layout can be more complicated Salts can be corrosive Graphite foils have been used to improve heat spreading

© Taylor and Francis Group, LLC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

Heat Storage – Bond Energy

Absorb/Release chemical energy by shifting chemical equilibrium reactions

- Change temperature, pressure
- Examples: hydration, hydriding, ammonia/salt reactions
- Chemical reaction should be reversible

Heat Storage – Questions

What temperature(s) is/are required? What materials to use? What capacity to use? (kWh, MWh, Gwh) How does cost scale with size? What are loss rates & pathways? When would it be used, if at all? Where would it be located?

MIT Dept. of Nuclear Science and Engineering 22.033/22.33 – Nuclear Design Course

MIT OpenCourseWare http://ocw.mit.edu

22.033 / 22.33 Nuclear Systems Design Project Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.