22.033 Process Heat

Massachusetts Institute of Technology Lauren Ayers Sarah Laderman Aditi Verma Anonymous student

Presentation 1 October 5, 2011

Outline

- System Layout
- Heat Exchanger Designs
- Heat Storage Options
- Heat Transport
- Future Work

Types of Heat Exchangers Investigated

- Standard shell and tube
- Printed circuit heat exchangers
- Helical shell and tube
- Thermosyphons

Criteria for Selecting a Heat Exchanger

- Operating temperature and pressure
- High heat transfer
 performance
- Effectiveness
- Fouling

Courtesy of MERUS GmbH. Used with permission.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Max. operating pressure: ~70 MPa Max. operating temperature: dependent on materials Induced turbulence + high shear stress = less fouling

Printed Circuit Heat Exchangers (PCHEs)

- All-metal HXs made of diffusion bonded plates
- Long design life (up to 60 years)
- Compact, mass/duty ratio of 0.2 tons/MW
- High operating temperatures (up to 900 C) and pressure (60 MPa)
- High surface area density (2500 m2/m3)
- Hybrid fin and plate type PCHE, H2X, suitable for coupling gaseous and liquid working fluids

Diffusion bonding of PCHE plates (Heatric[™])

Cross sectional view of the semi-circular passages (Heatric[™])

© Heatric. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Current operating experience of Heatric[™] PCHEs

(Gezelius, K., "Design of Compact Intermediate Heat Exchangers for Gas Cooled Fast Reactors," Bachelors' & Masters' Thesis, MIT, June 2004.)

Heat Exchanger Requirements

- Operating Temperatures
 - HX connected to CO2 loop: 650-900 °C
 - Hydrogen plant: 700-900 °C
 - Biofuels plant: 240-300 °C
 - Heat storage: 300-500 °C
- Standardized heat exchanger design will reduce plant complexity and operating and maintenance costs

Heat Exchanger Configurations

- Two HX instead of single high temperature HX to increase design life
- Connect process heat system in parallel or series
- Remove heat from the secondary cycle before the power conversion system
 - Need to decide with core
- HX decisions will depend on flow rates and temperatures provided by core and needed by biofuels and hydrogen plants

Benefits of Heat Storage

- Plateau energy fluctuations during daily cycles
- Providing lower temperature to biofuels without wasting heat

Heat Storage Options

- Latent Heat vs. Sensible Heat
 - Latent storing energy in chemical bonds
 - Sensible using change of temperature of material to store heat (specific heat capacity)
- Decided on latent heat
 - Can store higher energy density
 - Provides heat at constant operating temperature
 - Uses phase change materials

Phase Change Material Decision Tree

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

PCM Selection

- Must have melting point in desired operating temperature range
- Ideal Characteristics:
 - High latent heat of fusion per unit mass
 - High density
 - High specific heat
 - High thermal conductivity
 - Chemically stable
 - Non-corrosive to the containment material

Liquid-Solid PCMs

- Paraffins & Salt Hydrates
 - Operating temperature too low
- Salts
 - Large range of operating temperatures
 - Issues: corrosion & low thermal conductivity
- Metals
 - Desirable thermodynamic properties
 - Issues: freezing can cause stresses to containment, temperature range is limited

Salt and Metal PCMs

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Looking Ahead

- Containment structure cannot be designed until a PCM is chosen
 - Material compatibility concerns
- Volume of material is dependent on:
 - Thermodynamic properties of the material
 - Amount of energy that needs to be stored

Heat Transport Methods

- Thermosyphons
 - Uses gravity and phase changes to move heat long distances with minimal heat loss
 - Highly dependent on location of plant
- Heat pipes
 - Can use capillary action and if in correct orientation, gravity can assist
 - Can also use centripetal, electrokinetic, magnetic, and osmotic forces
 - Not as practical for long distances and not as well developed technologies 17

Heat Transport Decisions

- Method of condensate transport determined by distance between plants
 - Will model hydrogen plant explosions and biofuel plant fires to determine safe distances
- Material and working fluid determined by HX choice and temperature environment

Future Work

- Finalize heat exchanger and heat storage designs
- Model system once initial outputs/inputs are available
 - Matlab, EES, RELAP
- Heat sink as a safety measure at hydrogen plant
- Determine plant distances as more data becomes available

Questions?

MIT OpenCourseWare http://ocw.mit.edu

22.033 / 22.33 Nuclear Systems Design Project Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.