QUIZ 1

1.5 HOURS

Name:

CLOSED BOOK QUESTIONS (20%)

For each of the following drawings, identify the components indicated by the red arrows and describe (in one sentence!) their function.

PWR

© University of CA press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Cross-sectional view of	What is it ?
a PWR fuel pin	What is its function ?
	What material is it made of ?
	What is it ? What is its function ?
	What material is it made of ?

Public domain image from wikipedia.

Contraction of the second	What is it ? What is its function ? What material is it made of ?
---------------------------	---

What material is it made of ?_____

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

BWR	What is it ?
	What is it ? What is its function ? What is it ? What is its function ? What is it ? What is it ?

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

What is it ?
What is its function ?
What is it ?
What is its function ?
What material is it made of ?
What is it ?
What is its function ?
What material is it made of ?

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

ENGINEERING OF NUCLEAR SYSTEMS

QUIZ 1

1.5 HOURS

OPEN BOOK QUESTIONS

Short Questions (10% each) (adapted from Shultis & Faw textbook)

- a) A nuclear reactor in a submarine delivers 18 MW of shaft power (work) at a cruising speed of 20 knots (1 knot = 1.852 km/hr). If the power plant has a thermal efficiency (= work/heat) of 25%, how much (in kg) of the ²³⁵U fuel is consumed on a 60,000 km trip around the world? In answering this question, make use of the following ²³⁵U data: 200 MeV/fission, absorption cross section = 678 b, fission cross section = 577 b
- b) Following a reactor scram, how long is it before the reactor power decreases to 0.5% of the steady-state power prior to shutdown? You may assume that the reactor had operated for an infinitely long period of time prior to shutdown.
- c) A small homogeneous sample of mass *m* with atomic mass *A* is irradiated uniformly by a constant neutron flux ϕ . The microscopic scattering cross section for the sample material is denoted by σ_s . Derive an expression for the time it takes all nuclei in the sample to scatter once (on average) with the neutrons. State any assumptions made.

Problem 2 (50%) – Temperature distribution within a fuel pellet with non-uniform heat generation (adapted from Duderstadt & Hamilton textbook)

The neutron flux depression within a cylindrical pellet can be modeled by assuming that the radial dependence of q''' is of the form $q'''(r) = q_0'''[1 + a(r/R)^2]$, where q_0''' is the volumetric heat generation rate at the pellet centerline, *r* is the radial coordinate within the pellet, *R* is the radius of the pellet, and *a* is a constant.

- i) Derive an expression for the linear power in the pellet, q', in terms of q_0''' , R and a. (10%)
- ii) Derive an expression for the centerline temperature as a function of the constant *a*, the linear power q', the fuel thermal conductivity k_{f} , and the fuel surface temperature T_{fo} . (25%)
- iii) Compute the centerline temperature for the following values of the constants: a=0.12, q'=25 kW/m, $k_f=3$ W/m-K and $T_{fo}=400$ °C. (5%)
- iv) Compute the centerline temperature for the case of uniform heat generation rate and the same values of q', k_f and T_{fo} . Explain physically any difference you may see between the results in 'iii' and 'iv'. (10%)

22.06 Engineering of Nuclear Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.