

1.818J/2.65J/2.650J/10.291J/10.391J/11.371J/ 22.081J/22.811J/ESD166J

SUSTAINABLE ENERGY

Prof. Michael W. Golay Nuclear Engineering Dept.

INTRODUCTION OF THE BASIC ELEMENTS OF PROBABILISTIC RISK (PRA) ANALYSES

- Fault Trees
- Risk
- Data
- Uncertainties
- Nuclear Power Plant PRA Structure
- Typical Results

THE PRE-PRA ERA (prior to 1975)

- Management of (unquantified at the time) uncertainty was always a concern.
- Defense-in-depth and safety margins became embedded in the regulations.
- "Defense-in-Depth is an element of the NRC's safety philosophy that employs successive compensatory measures to prevent accidents or mitigate damage if a malfunction, accident, or naturally caused event occurs at a nuclear facility." [Commission's White Paper, February, 1999]
- Design Basis Accidents are postulated accidents that a nuclear facility must be designed and built to withstand without loss to the systems, structures, and components necessary to assure public health and safety.

TECHNOLOGICAL RISK ASSESSMENT

• Study the system as an integrated socio-technical system.

<u>Probabilistic Risk Assessment (PRA) supports Risk Management</u> by answering the questions:

- What can go wrong? (accident sequences or scenarios)
- How likely are these scenarios?
- What are their consequences?

Risk = Expected consequences =
$$\sum_{\text{Sequences,i}} \text{Prob}_{i} * \text{Consequence}_{i}$$

the Risks Associated with Each Event, Respectively

THE HAZARD (some fission-product isotopes)

Isotope	Half-Life	Volatility	Health Hazard
¹³¹ I	8 d	Gaseous	External whole-body radiation; internal irradiation of thyroid; high
toxicity			
⁸⁹ Sr	54 y	Moderately volatile	Bones and lungs
¹⁰⁶ Ru	1 y	Highly volatile	Kidneys
¹³⁷ Cs	33 y	Highly volatile	Internal hazard to whole body
\backslash			

CRITICAL SAFETY FUNCTIONS HARDWARE / TRAINING / PROCEDURES / CULTURE

KEEP FISSION PRODUCTS WITHIN THE FUEL

- Control Reactor Power
 - Control reactivity additions
 - Shutdown reliably
- Cool the Reactor and Spent Fuel
 - Maintain coolant inventory
 - Maintain coolant flow
 - Maintain coolant heat sinks

KEEP RADIOACTIVE MATERIAL OUT OF THE BIOSPHERE

- Maintain Containment Integrity
 - Prevent over-pressurization
 - Prevent over-heating
 - Prevent containment bypass
- Capture Material Within Containment
 - Scrubbing
 - Deposition
 - Chemical capture

SHIELD PERSONNEL FROM RADIATION

EMERGENCY SAFETY FUNCTIONS

REACTOR SAFETY STUDY (WASH-1400; 1975)

Prior Beliefs:

- 1. Protect against large LOCA.
- 2. CDF is low (about once every 100 million years, 10-8 per reactor year) .
- 3. Consequences of accidents would be disastrous.

Major Findings:

- 1. Dominant contributors: Small LOCAs and Transients.
- 2. CDF higher than earlier believed (best estimate: 5x10-5, once every 20,000 years; upper bound: 3x10-4 per reactor year, once every 3,333 years).
- 3. Consequences significantly smaller.
- 4. Support systems and operator actions very important.

Source: Reactor Safety Study, Nuclear Regulatory Commission, WASH-1400.

RISK ASSESSMENT REVIEW GROUP

- "We are unable to define whether the overall probability of a core melt given in WASH-1400 is high or low, but we are certain that the error bands are understated."
- WASH-1400 is "inscrutable."
- "...the fault -tree/event-tree methodology is sound, and both can and should be more widely used by NRC."
- "PSA methods should be used to deal with generic safety issues, to formulate new regulatory requirements, to assess and revalidate existing regulatory requirements, and to evaluate new designs."

COMMISSION ACTIONS (Jan. 18, 1979)

- "...the Commission has reexamined its views regarding the Study in light of the Review Group's critique."
- "The Commission withdraws any explicit or implicit past endorsement of the Executive Summary."
- "…the Commission does not regard as reliable the Reactor Safety Study's numerical estimate of the overall risk of reactor accidents."

NPP: INITIATING EVENTS

- Transients
 - Loss of offsite power
 - Turbine trip
 - Others
- Loss-of-Coolant Accidents (LOCAs)
 - Small LOCA
 - Medium LOCA
 - Large LOCA

ILLUSTRATION EVENT TREE: Station Blackout Sequences

From: K. Kiper, MIT Lecture, 2006

PRA MODEL OVERVIEW AND SUBSIDIARY OBJECTIVES

LOSP DISTRIBUTION

From: K. Kiper, MIT Lecture, 2006

SOUTH TEXAS PROJECT 1 & 2 PWR A2 STATION BLACKOUT EVENT TREE

23

AN EXAMPLE OF A PUMPING SYSTEM T1 **Control Valve V1** Fuel **P**1 Pump Train 1 Source Emergency Diesel **T**2 Control Valve Engine V2 P2 Λ Source Pump Train 2 Electric Power Source, E Control System, C Cooling System, CO

CUT SETS AND MINIMAL CUT SETS

CUT SET: A cut set is any set of failures of components and actions sufficient to cause system failure.

MINIMAL CUT SET: A minimal cut set is a set of failures <u>necessary</u> to cause system failure. A minimal cut set contains only a <u>single</u> cut set.

PUMPING SYSTEM EXAMPLE MINIMAL CUT SETS

T1, Tank
P1, Pump
V1, Valveand ofT2, Tank
P2, Pump
V2, ValveTrain 1Train 2

Failure of Any Minimal Cut Set Will Result in System Failure

VENN DIAGRAM FOR FUEL SYSTEM SUPPLY FAILURE

ILLUSTRATION OF DE-COMPOSITION OF TOP EVENT INTO A COMBINATION OF MINIMAL CUT SETS

$T = E_1 \diamond E_2$	(1)
$E_1 = E_1 + C_1 + CO_1 + M_1$	(2)
$E_2 = E_2 + C_2 + CO_2 + M_2$	(3)
$M_1 = T_1 + P_1 + V_1$	(4)
$M_2 = T_2 + P_2 + V_2$	(5)
$E_1 = E_1 + C_1 + CO_1 + (T_1 + P_1 + V_1)$	(6)
$E_2 = E_2 + C_2 + CO_2 + (T_2 + P_2 + V_1)$	(7)

NOTE: $E = E_1 = E_2$, $C = C_1 = C_2$, $CO = CO_1 = CO_2$

$$T = [(E + C + CO) + (T_1 + P_1 + V_1)] * [(E + C + CO) + (T_2 + P_2 + V_2)]$$
(8)
= $(E_1 + C_1 + CO_1) * (E_2 + C_2 + CO_2) + (E_2 + C_2 + CO_2) * [(T_1 + P_1 + V_1) + (T_2 + P_2 + V_2)]$
(E + C + CO)
(E + C + CO)
(E + C + CO) $\{ 1 + [(T_1 + P_1 + V_1) + (T_2 + P_2 + V_2)] \}^{1} + (T_1 + P_1 + V_1) + (T_2 + P_2 + V_2)$
 $\begin{bmatrix} T_1 \cdot T_2 + T_1 \cdot P_2 + T_1 \cdot V_2 \\ + P_1 \cdot T_2 + P_1 \cdot P_2 + P_1 \cdot V_2 \\ + V_1 \cdot T_2 + V_1 \cdot P_2 + V_1 \cdot V_2 \end{bmatrix}$
 $T = (E + C + CO) + \begin{bmatrix} T_1 \cdot T_2 + T_1 \cdot P_2 + T_1 \cdot V_2 \\ + P_1 \cdot T_2 + P_1 \cdot P_2 + P_1 \cdot P_2 + P_1 \cdot V_2 \\ + P_1 \cdot T_2 + P_1 \cdot P_2 + P_1 \cdot V_2 \\ + V_1 \cdot T_2 + V_1 \cdot P_2 + V_1 \cdot V_2 \end{bmatrix} = \bigcup_{i=1}^{N} (MCS_i)$ (9)

DATA SOURCES	
 Generic Data Bases (those available are strongly safety-oriented e.g., NPRDS/EPIX, NRC, GADS,) 	1;
 Plant-Specific Data 	
• New Tests	
 Subjective Judgment and Modeling 	

UNCERTAINTY

- FACTORS OF UNCERTAINTY
 - Randomness
 - Phenomenological Ignorance
 - Systematic Ignorance (complexity, Sensitivity)
 - Data Ignorance
- IMPORTANT UNCERTAIN PHENOMENA
 - Common Cause Failures
 - Internal
 - External
 - Rare Events (e.g., Reactor Core Melt Progression)
- TREATMENT OF UNCERTAINTY
 - Statistical (via Standard Deviation)
 - Sensitivity Analyses
 - Subjective Probability Elicitation
 - Research and Data Collection
 - Assignment of Bias

TYPES OF COMMON CAUSE FAILURES AND THEIR ASPECTS

	DEPENDENT	STRUCTURAL*	ENVIRONMENTAL	EXTERNAL*
Description of Failure Cause	Failure of an interfacing system, action or component	A common material or design flaw which simultaneously affects all components population	A change in the operational environment which affects all members of a component population simultaneously	An event originating outsi the system which affects a members of a component population simultaneously
lardware Examples	 Loss of electrical power Loss of steam production in steam-driven feedwater system A manufacturer provides defective replacement parts that are installed in all components of a given class 	 Faulty materials Aging Fatigue Improperly cured materials Manufacturing flaw 	 Dirty water in RCS with regard to pump seal High pressure High temperature Vibration 	 Weather: hurricanes, tornado, ice, heat, low cooling water flow Earthquake (breaks pipe disables cooling system breaks containment) Flooding→loss of electricity Birds in engine of airpla
luman Examples	 Following a mistaken leader An erroneous maintenance procedure is repeated for all components of a given class 	Incorrect trainingPoor managementPoor motivationLow pay	 Common cause psf's New disease Hunger Fear Noise Radiation in control room 	 Explosion Toxic substance Weather Earthquake Concern for families
Easy to Anticipate?:				
Component failure	High	Very Low	Medium	Medium
Human error	Medium	Very Low	Medium	Medium
Easy to Mitiga	te?:			
Component failure	High, if system designed for mitigation	Very Low, hard to design for mitigation	Low	Low /
Human error	High, if feedback provided to identify the error promptly	Very Low, the factors making CCF likely also discourage being prepared for correction	Low	Low

* Usually there are no precursors

PRA MODEL OVERVIEW AND SUBSIDIARY OBJECTIVES

INTEGRATED LEVEL 3 PRA FRAMEWORK

QUANTIFIED ATWS SEQUENCE EVENT TREE

ANTICIPATED TRANSIENT WITHOUT SCRAM

PLANT MODEL OVERVIEW (WITH IPE REPORT SECTION REFERENCES)

Courtesy of K. Kiper. Used with permission.

QUANTITATIVE SAFETY GOALS OF THE US NUCLEAR REGULATORY COMMISSION (August, 1986)

Early and latent cancer mortality risks to an individual living near the plant should not exceed 0.1 percent of the background accident or cancer mortality risk, approximately 5×10^{-7} /year for early death and 2×10^{-6} /year for death from cancer.

- The prompt fatality goal applies to an average individual living in the region between the site boundary and 1 mile beyond this boundary.
- The latent cancer fatality goal applies to an average individual living in the region between the site boundary and 10 miles beyond this boundary.

From: Wilson & Crouch, Risk/Benefit Analysis, Harvard University Press, 2001.

SUBSIDIARY GOALS
 The average core damage frequency (CDF) should be less than 10-4/ry (once every 10,000 reactor years)
 The large early release frequency (LERF) should be less than 10-5/ry (once every 100,000 reactor years)

"ACCEPTABLE" VS. "TOLERABLE" RISKS (UKHSE)

RISK-INFORMED DECISION MAKING FOR LICENSING BASIS CHANGES (RG 1.174, 1998)

ACCEPTANCE GUIDELINES FOR CORE DAMAGE FREQUENCY

JO -2 10-2	Region I	 Region I No change Region II Small Cha Track Cum 	nges	
10-6	Region II	- Track Cumulative Impacts Region III - Very Small Changes - More flexibility with respect to Baseline - Track Cumulative Impacts		
	Region III			
	10 -5	10 -4	CDF 56	

RISK-INFORMED FRAMEWORK

Traditional "Deterministic" Approaches

Unquantified Probabilities

 Design-Basis Accidents
 <u>Structuralist</u> Defense in Depth

 Can impose heavy regulatory burden

 Incomplete

Risk-Informed Approach

•Combination of traditional and risk-based approaches Risk-Based Approach

Quantified Probabilities
 Scenario Based
 Realistic
 <u>Rationalist</u> Defense in Depth
 Incomplete
 Quality is an issue

RISK IMPORTANCE MEASURES

Risk Achievement Worth (RAW_i) Maximum relative possible increase in total risk due to failure of element, i; the element is assumed always to fail.

$$RAW_i - \frac{R(q_i = 1)}{R_{Nom}}$$

where

 RAW_i = the risk achievement worth of the ith component, action or cut set

COMPONENT RISK IMPORTANCE

RISK IMPORTANCE MEASURES

Risk Reduction Worth (RRW_i) = Maximum possible relative reduction in risk due to perfection of event i reliability; the component is assumed always to succeed every time.

$$RRW_i = \frac{R_{Nom}}{R(q_i = 0)},$$

where

 RRW_i = the relative risk decrease importance of the ith component, action or cut set

CORE DAMAGE FREQUENCY PERCENT INCREASE PER SYSTEM1

Image by MIT OpenCourseWare.

USES OF RISK IMPORTANCE MEASURES

- Fussell-Vesely
 - Measure a Component's or System's Participation in Risks
 - Can Be Used to Identify Which Components or Systems Contribute to Current Risks
- Risk Achievement Worth
 - Identifies Which Components or Systems Must Be Kept Reliable
- Risk Reduction Worth
 - Identifies Which Components or Systems Are Most Valuable for Improvement
 - Note

$$I_{Fussell-Vesely_i} = 1 - \frac{1}{RRW_i}$$

SYSTEM COMPONENT COST AND RELIABILITY DATA

Component	Component Failure Probability
Tank, T-1 or T-2	3.00E-5
Valve, V-1 or V-2	1.20E-4
Pump, P-1 or P-2	9.00E-5
Electric Power, E	1.50E-4
Control System, C	3.00E-4
Cooling System, CO	1.00E-4

SUMMARY OF IMPORTANCE RANKINGS					
Component / or System Importance Measures	Control System, C	Electric Power System, E	Valve, V-1		
Fussell-Vesely	0.54	0.27	5x10 ⁻⁵		
Risk Reduction Worth	2.18	1.37	1.00005		
Risk Achievement Worth	1819	1819	1.44		

TIMELINE FOR NUCLEAR WASTE DISPOSAL

Image by MIT OpenCourseWare.

YUCCA MOUNTAIN, NEVADA

Image by MIT OpenCourseWare.

YUCCA MOUNTAIN SUBSURFACE OVERVIEW

Image by U.S. Office of Civilian Radioactive Waste Management.

Source: U.S. Department of Energy.

YUCCA MOUNTAIN: PREDICTED AVERAGE ANNUAL DOSE FOR 10,000 YEARS

Fig. F-17 in *Draft Supplemental Environmental Impact Statement for a Geologic Repository at Yucca Mountain*. U.S. Department of Energy, October 2007, DOE/EIS-0250F-S1D.

YUCCA MOUNTAIN: PREDICTED MEDIAN ANNUAL DOSE FOR 1,000,000 YEARS

Fig. F-17 in *Draft Supplemental Environmental Impact Statement for a Geologic Repository at Yucca Mountain*. U.S. Department of Energy, October 2007, DOE/EIS-0250F-S1D. MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.