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We will now extend the bound-state calculation to three-dimensional systems.  

The problem we want to solve is essentially the same as before, except that we wish to 

determine the bound-state energy levels and corresponding wave functions for a particle 

in a three-dimensional spherical well potential. Although this is a three-dimensional 

potential, we can take advantage of its symmetry in angular space and reduce the 

calculation to an equation still involving only one variable, the radial distance between 

the particle position and the origin.  In other words, the spherical potential is still a 

function of one variable, 

V (r) = −Vo r < ro

 (4.1) 

= 0 otherwise 

Here r is the radial position of the particle relative to the origin.  Any potential that is a 

function only of r, the magnitude of the position r and not the position vector itself, is 

called a central-force potential.  As we will see, this form of the potential makes the 

solution of the Schrödinger wave equation particularly simple.  For a system where the 

potential or interaction energy has no angular dependence, one can reformulate the 

problem by factorizing the wave function into a component that involves only the radial 

coordinate and another component that involves only the angular coordinates.  The wave 

equation is then reduced to a system of uncoupled one-dimensional equations, each 

describing a radial component of the wave function.  As to the justification for using a 
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central-force potential for our discussion, this will depend on which properties of the 

nucleus we wish to study. 

We again begin with the time-independent wave equation 

⎡ 2
2 ⎤ 

⎢− 
h

∇ + V (r)⎥ψ (r) = Eψ (r) (4.2)
⎣ 2m ⎦ 

Since the potential function has spherical symmetry, it is natural for us to carry out the 

analysis in the spherical coordinate system rather than the Cartesian system.  A position 

vector r then is specified by the radial coordinate r and two angular coordinates, θ  and 

ϕ , the polar and azimuthal angles respectively, see Fig. 1.  In this coordinate system 

Fig. 1.  The spherical coordinate system.  A point in space is located by the radial 

coordinate r, and polar and azimuthal angles θ  and ϕ . 

the Laplacian operator ∇2  is of the form 

∇ 2 = Dr
2 + 

1
2 ⎢
⎡− L 

2

2 

⎥
⎤ 

(4.3)
r ⎣ h ⎦ 

where Dr 
2  is an operator involving only the radial coordinate, 
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D 2 = 
r 
1
∂
∂ 

r 
⎡
⎢⎣ 
r 2 

∂
∂ 

r 
⎤
⎥⎦ 

    (4.4)  r 2 

and the operator L2 involves only the angular coordinates, 

− 
h 

L2

2 = 
sin

1 
θ ∂

∂
θ ⎢⎣
⎡sinθ 

∂
∂
θ ⎥⎦
⎤ + 

sin
1

2 θ ∂
∂
ϕ 

2

2 (4.5) 

In terms of these operators the wave equation (4.2) becomes 

⎡ h 2
2 L2 ⎤


⎢− Dr + + V (r)⎥ψ (rθϕ) = Eψ (rθϕ) (4.6)

⎣ 2m 2mr 2 

⎦ 

For any potential V(r) the angular variation of ψ  is always determined by the operator 

L2/2mr2. Therefore one can study the operator L2 separately and then use its properties to 

simplify the solution of (4.6).  This needs to be done only once, since the angular 

variation is independent of whatever form one takes for V(r).  It turns out that L2 is very 

well known (it is the square of L which is the angular momentum operator); it is the 

operator that describes the angular motion of a free particle in three-dimensional space. 

We first summarize the basic properties of L2 before discussing any physical 

interpretation.  It can be shown that the eigenfunction of L2 are the spherical harmonics 

functions, Yl 
m (θ ,ϕ) , 

L2Yl 
m (θ ,ϕ) = h 2l(l +1)Yl 

m (θ ,ϕ) (4.7) 

where 

Yl 
m (θ ,ϕ) =

⎡
⎢
⎢⎣ 

2l 
4π
+1 

(
( 
l

l 

+

− m)!
)! 
⎤
⎥
⎥⎦ 

1/ 2 

Pl 
m (cosθ )eimϕ (4.8)

m 

and 

Pl 
m (µ) = 

(1− µ 
l 

2 )m / 2 d l
l 

+

+ 

m

m (µ 2 −1)l (4.9)
2 l! dµ 
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with µ = cosθ . The function Pl 
m (µ)  is called the associated Legendre polynomials, 

which are in turn expressible in terms of Legendre polynomials Pl (µ) , 

mPl 
m (µ) = (1− µ) / 2 d m 

Pl (µ)    (4.10)  
mdµ 

with Po(x) = 1, P1(x) = x, P2(x) = (3x2 – 1)/2, P3(x) = (5x3-3x)/2, etc.  Special functions 

like Yl 
m  and Pl 

m  are quite extensively discussed in standard texts [see, for example, 

Schiff, p.70] and reference books on mathematical functions [More and Feshbach, p. 

1264]. For our purposes it is sufficient to regard them as well known and tabulated 

quantities like sines and cosines, and whenever the need arises we will invoke their 

special properties as given in the mathematical handbooks. 

It is clear from (4.7) that Yl 
m (θ ,ϕ) is an eigenfunction of L2 with corresponding 

eigenvalue l(l +1)h 2 . Since the angular momentum of the particle, like its energy, is 

quantized, the index l  can take on only positive integral values or zero, 

l  = 0, 1, 2, 3, … 

Similarly, the index m can have integral values from - l  to l , 

m = - l , - l +1, …, -1, 0, 1, …, l -1, l 

For a given l , there can be 2 l +1 values of m.  The significance of m can be seen from 

the property of Lz, the projection of the orbital angular momentum vector L along a 

certain direction in space (in the absence of any external field, this choice is up to the 

observer). Following convention we will choose this direction to be along the z-axis of 

our coordinate system, in which case the operator Lz has the representation, 

L = −ih∂ / ∂ϕ , and its eignefunctions are also Yl 
m (θ ,ϕ) , with eigenvalues mh . Thez 

indices l  and m are called quantum numbers. Since the angular space is two-dimensional 
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(corresponding to two degrees of freedom), it is to be expected that two quantum 

numbers will emerge from our analysis.  By the same token we should expect three 

quantum numbers in our description of three-dimensional systems.  We should regard the 

particle as existing in various states which are specified by a unique set of quantum 

numbers, each one is associated with a certain orbital angular momentum which has a 

definite magnitude and orientation with respect to our chosen direction along the z-axis.  

The particular angular momentum state is described by the function Yl 
m (θ ,ϕ) with l 

known as the orbital angular momentum quantum number, and m the magnetic quantum 

number. It is useful to keep in mind that Yl 
m (θ ,ϕ)  is actually a rather simple function for 

low order indices.  For example, the first four spherical harmonics are: 

Y0
0 = 1/ 4π , Y1 

−1 = 3/ 8π e−iϕ sinθ , Y1
0 = 3/ 4π cosθ , Y1

1 = 3/ 8π eiϕ sinθ 

Two other properties of the spherical harmonics are worth mentioning.  First is 

that {Yl 
m (θ ,ϕ) }, with l  = 0, 1, 2, … and − l ≤ m ≤ l , is a complete set of functions in 

the space of 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π in the sense that any arbitrary function of θ  and 

ϕ  can be represented by an expansion in these functions.  Another property is 

orthonormality, 

π 2π 

∫ sinθdθ ∫ dϕYl 
m* (θ ,ϕ)Yl 

m 
' 

' (θ ,ϕ) = δ ll 'δ mm ' (4.11) 
0 0 

where δ ll '  denotes the Kronecker delta function; it is unity when the two subscripts are 

equal, otherwise the function is zero. 

Returning to the wave equation (4.6) we look for a solution as an expansion of the 

wave function in spherical harmonics series, 

ψ (rθϕ) = ∑Rl (r)Yl 
m (θ ,ϕ)     (4.12)  

l,m 
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 Because of (4.7) the L2 operator in (4.6) can be replaced by the factor l(l +1)h 2 . In 

view of (4.11) we can eliminate the angular part of the problem by multiplying the wave 

equation by the complex conjugate of a spherical harmonic and integrating over all solid 

angles (recall an element of solid angle is sinθdθdϕ ), obtaining 

⎡ h 2
2 l(l +1)h 2 ⎤ 

⎢− Dr + 2 + V (r)⎥Rl (r) = ERl (r) (4.13)
⎣ 2m 2mr ⎦ 

This is an equation in one variable, the radial coordinate r, although we are treating a 

three-dimensional problem.  We can make this equation look like a one-dimensional 

problem by transforming the dependent variable Rl . Define the radial function 

ul (r) = rRl (r)      (4.14)  

Inserting this into (4.13) we get 

− 
h 2 d 2ul (r) 

+
⎡l(l +1)h 2 

+ V (r)
⎤ 
u (r) = Eu (r) (4.15)

2m dr 2 ⎢
⎣ 2mr 2 ⎥

⎦ 
l l 

We will call (4.15) the radial wave equation. It is the basic starting point of three-

dimensional problems involving a particle interacting with a central potential field. 

We observe that (4.15) is actually a system of uncoupled equations, one for each 

fixed value of the orbital angular momentum quantum number l . With reference to the 

wave equation in one dimension, the extra term involving l(l +1)  in (4.15) represents the 

contribution to the potential field due to the centrifugal motion of the particle.  The 1/r2 

dependence makes the effect particularly important near the origin; in other words, 

centrigfugal motion gives rise to a barrier which tends to keep the particle away from the 

origin. This effect is of course absent in the case of l  = 0, a state of zero orbital angular 

momentum, as one would expect.  The first few l  states usually are the only ones of 

interest in our discussion (because they tend to have the lowest energies); they are given 

special spectroscopic designations, 
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 notation: s, p, d, f, g, h, … 

l  = 0, 1, 2, 3, 4, 5, … 

where the first four letters stand for ‘sharp’, ‘principal’, ‘diffuse’, and ‘fundamental’ 

respectively.  After f the letters are assigned in alphabetical order, as in h, i, j, …  The 

wave function describing the state of orbital angular momentum l  is often called the l th 

partial wave, 

ψ l (rθϕ) = Rl (r)Yl 
m (θϕ)     (4.16)  

Notice that in the case of s-wave the wave function is spherically symmetric since Y0
0 is 

independent of θ  and ϕ . 

Interpretation of Orbital Angular Momentum  

In classical mechanics, the angular momentum of a particle in motion is defined 

as the vector product, L = r × p , where r is the particle position and p its linear 

momentum.  L is directed along the axis of rotation (right-hand rule), as shown in Fig. 2.   

Fig. 2.  Angular momentum of a particle at position r moving with linear momentum p 

(classical definition). 

L is called an axial or pseudovector in contrast to r and p, which are polar vectors. Under 

inversion, r → −r , and p → − p , but L → L . Quantum mechanically, L2 is an operator 

with eigenvalues and eigenfunctions given in (4.7).  Thus the magnitude of L is 

)1( +llh , with l  = 0, 1, 2, …being the orbital angular momentum quantum number.  

We can specify the magnitude and one Cartesian component (usually called the z­
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component) of L by specifying l  and m, an example is shown in Fig. 3.  What about the 

x- and y-components?  They are undetermined, in that they cannot be observed  

Fig. 3. The l(l +1) = 5 projections along the z-axis of an orbital angular momentum with 

l  = 2. Magnitude of L is h6 .  

simultaneously with the observation of L2 and Lz. Another useful interpretation is to look 

at the energy conservation equation in terms of radial and tangential motions.  By this we 

mean that the total energy can be written as 

1 2 2 1 2 L2 

E = m(vr + vt ) + V = mvr + 2 + V    (4.17)  
2 2 2mr 

where the decomposition into radial and tangential velocities is depicted in Fig. 4. 

Eq.(4.17) can be compared with the radial wave equation (4.15). 

Fig. 4. Decomposing the velocity vector of a particle at position r into radial and 

tangential components.  
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Thus far we have confined our discussions of the wave equation to its solution in 

spherical coordinates. There are situations where it will be more appropriate to work in 

another coordinate system. As a simple example of a bound-state problem, we can 

consider the system of a free particle contained in a cubical box of dimension L along 

each side.  In this case it is clearly more convenient to write the wave equation in 

Cartesian coordinates, 

h 2 ⎡ ∂ 2 ∂ 2 ∂ 2 ⎤
− ⎢ + + ⎥ψ (xyz) = Eψ (xyz) (4.17)

2m ⎣∂x 2 ∂y 2 ∂z 2 
⎦ 

0 <x, y, z < L. The boundary conditions are ψ  = 0 whenever x, y, or z is 0 or L.  Since 

both the equation and the boundary conditions are separable in the three coordinates, the 

solution is of the product form, 

ψ (xyz) =ψ nx 
(x)ψ ny 

( y)ψ nz 
(z) 

= (2 / L)3 / 2 sin(n πx / L)sin(nyπy / L)sin(n πz / L) (4.18)x z 

where nx, ny, nz are positive integers (excluding zero), and the energy becomes a sum of 

three contributions, 

E = E + E + En n n n n nx y z x y z 

= (hπ )
2

2 

[nx 
2 + ny 

2 + nz 
2 ]    (4.19)  

2mL 

We see that the wave functions and corresponding energy levels are specified by the set 

of three quantum numbers (nx, nx, nz). While each state of the system is described by a 

unique set of quantum numbers, there can be more than one state at a particular energy 

level. Whenever this happens, the level is said to be degenerate. For example, (112), 
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(121), and (211) are three different states, but they are all at the same energy, so the level 

at 6(hπ )2 / 2mL2  is triply degenerate.  The concept of degeneracy is useful in our later 

discussion of the nuclear shell model where one has to determine how many nucleons can 

be put into a certain energy level. In Fig. 6 we show the energy level diagram for a 

particle in a cubical box.  Another way to display the information is through a table, such 

as Table I. 

Fig. 6. Bound states of a particle in a cubical box of width L. 

Table I. The first few energy levels of a particle in a cubical box which correspond to 

Fig. 6. 

nx  ny  nz 	
2mL2 

E degeneracy
(hπ )2 

_________ ________ _________ 

1 1 1 3 1 

1 1 2 6 3 

1 2 1 

2 1 1 

1 2 2, … 9 3 

1 1 3, … 11 3 

2 2 2 12 1 
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The energy unit is seen to be ∆E = (hπ )2 / 2mL2 . We can use this expression to estimate 

the magnitude of the energy levels for electrons in an atom, for which m = 9.1 x10-28 gm 

and L ~ 3 x 10-8cm, and for nucleons in a nucleus, for which m = 1.6x10-24 gm and L ~ 

5F. The energies come out to be ~30 ev and 6 Mev respectively, values which are typical 

in atomic and nuclear physics.  Notice that if an electron were in a nucleus, then it would 

have energies of the order 1010 ev ! 

In closing this section we note that Bohr had put forth the “correspondence 

principle” which states that quantum mechanical results will approach the classical 

results when the quantum numbers are large.  Thus we have 

ψ 2 = 
2 sin 2 (nπx / L) → 

1     (4.20)  n L L 

n →∞ 

What this means is that the probability of finding a particle anywhere in the box is 1/L, 

i.e., one has a uniform distribution, see Fig. 7. 

Fig. 7. The behavior of sin2nx in the limit of large n.   

Parity 

Parity is a symmetry property of the wave function associated with the inversion 

operation. This operation is one where the position vector r is reflected through the 

origin (see Fig. 1), so r → −r . For physical systems which are not subjected to an 

external vector field, we expect these systems will remain the same under an inversion 
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operation, or the Hamiltonian is invariant under inversion.  If ψ (r)  is a solution to the 

wave equation, then applying the inversion operation we get 

Hψ (−r) = Eψ (−r)     (4.21)  

which shows that ψ (−r) is also a solution. A general solution is therefore obtained by 

adding or subtracting the two solutions, 

H [ψ (r) ±ψ (−r)] = E[ψ (r) ±ψ (−r)]    (4.22)  

Since the function ψ + (r) =ψ (r) +ψ (−r)  is manifestly invariant under inversion, it is 

said to have positive parity, or its parity, denoted by the symbol π , is +1. Similarly, 

ψ − (r) =ψ (r) −ψ (−r)  changes sign under inversion, so it has negative parity, or π  = -1. 

The significance of (4.22) is that a physical solution of our quantum mechanical 

description should have definite parity; this is the condition we have previously imposed 

on our solutions in solving the wave equation (see Lec3).  Notice that there are functions 

which do not have definite parity, for example, Asinkx + Bcoskx.  This is the reason that 

we take either the sine function or the cosine function for the interior solution in Lec3.  In 

general, one can accept a solution as a linear combination of individual solutions all 

having the same parity.  A linear combination of solutions with different parities has no 

definite parity, and is therefore unacceptable. 

In spherical coordinates, the inversion operation of changing r to –r is equivalent 

to changing the polar angle θ  to π −θ , and the azimuthal angle ϕ  to ϕ +π . The effect 

of the transformation on the spherical harmonic function Yl
m (θ ,ϕ) ~ eimϕ Pl 

m (θ ) is 

eimϕ → eimϕ eimπ = (−1)m eimϕ 

Pl 
m (θ ) → (−1)l−m Pl 

m (θ ) 
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so the parity of Yl 
m (θ ,ϕ) is (−1)l . In other words, the parity of a state with a definite 

orbital angular momentum is even if l  is even, and odd if l  is odd. All eigenfunctions 

of the Hamiltonian with a spherically symmetric potential are therefore either even or odd 

in parity.   
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