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Lecture 15 (11/6/06) 

Charged-Particle Interactions: Radiation Loss, Range 
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The sudden deflection of an electron by the Coulomb field of  nuclei can cause 

the electron to radiate, producing a continuous spectrum of x-rays called bremsstrahlung. 

The fraction of electron energy converted into bremsstrahlung increases with increasing 

electron energy and is greater for media of high atomic number.  (This process is 

important in the production of x-rays in conventional x-ray tubes.) 

According to the classical theory of electrodynamics [J. D. Jackson, Classical 

Electrodynamics (Wiley, New York, 1962), p. 509], the acceleration produced by a 

nucleus of charge Ze on an incident particle of charge ze and mass M is proportional to 

Zze2/M. The intensity of radiation emitted is proportional to (ze ×  acceleration)2 ~ 

(Zz2e3/M)2 . Notice the (Z/M)2 dependence; this shows that bremsstrahlung is more 

important in a high-Z medium.  Also it is more important for electrons and positrons than 

for protons and α -particles. Another way to understand the (Z/M)2 dependence is to 

recall the derivation of stopping power in Lec13 where the momentum change due to a 

collision between the incident particle and a target nucleus is (2ze2/vb) x Z. The factor Z 

represents the Coulomb field of the nucleus (in Lec13 this was unity since we had an 

atomic electron as the target).  The recoil velocity of the target nucleus is therefore 

proportional to Z/M, and the recoil energy, which is the intensity of the radiation emitted, 

is therefore proportional to (Z/M)2. 

In an individual deflection by a nucleus, the electron can radiate any amount of 

energy up to its kinetic energy T. The spectrum of bremsstrahlung wavelength for a 

thick target is of the form sketched below, with λmin = hc /T . This converts to a 

frequency spectrum which is a constant up the maximum frequency of ν max = T / h . The 
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shape of the spectrum is independent of Z, and the intensity varies with electron energy 

like 1/T. 

In the quantum mechanical theory of bremsstrahlung a plane wave representing 

the electron enters the nuclear field and is scattered.  There is a small but finite chance 

that a photon will be emitted in the process.  The theory is intimately related to the theory 

of pair production where an electron-positron pair is produced by a photon in the field of 

a nucleus. Because a radiative process involves the coupling of the electron with the 

electromagnetic field of the emitted photon, the cross sections for radiation are of the 

order of the fine-structure constant [Dicke and Wittke, p. 11], e2 / hc ( = 1/137), times the 

cross section for elastic scattering.  This means that most of the deflections of electrons 

by atomic nuclei result in elastic scattering, only in a small number of instances is a 

photon emitted.  Since the classical theory of bremsstrahlung predicts the emission of 

radiation in every collision in which the electron is deflected, it is incorrect.  However, 

when averaged over all collisions the classical and quantum mechanical cross sections are 

of the same order of magnitude, 
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σ rad ~ Z 2 
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⎛ e2
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cm2/nucleus (14.1)
137 ⎝ mec ⎠ 

where e2 / mec
2 = re = 2.818 x 10-13 cm is the classical radius of electron.  In the few 

collisions where photons are emitted a relatively large amount of energy is radiated.  In 

this way the quantum theory replaces the multitude of small-energy losses predicted by 

the classical theory by a much smaller number of larger-energy losses.  The spectral 
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distributions are therefore different in the two theories, with the quantum description 

being in better agreement with experiments. 

Given a nucleus of charge Ze and an incident electron of kinetic energy T, the 

quantum mechanical differential cross section for the emission of a photon with energy in 

d (hν ) about hν  is 

⎡ dσ ⎤ T + m c 2 1 
⎢d (hν )⎥

= σ o BZ 2 

T
e 

hν 
(14.2)

⎣ ⎦ rad 

2 2 2where σ o = (e / mec ) /137 = 0.580 x 10-3 barns and B ~ 10 is a very slowly varying 

dimensionless function of Z and T.  A general relation between the energy differential 

cross section, such as (14.2), and the energy loss per unit path length is 

dT T dσ
− = n∫ dEE (14.3)

dx 0 dE 

where dσ / dE  is the differential cross section for energy loss E.  Applying this to (14.2) 

we have 
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is the total bremsstrahlung cross section. The variation of B , the bremmstrahlung cross 

section in units of σ o Z 2 , with the kinetic energy of an incident electron is shown in the 

sketch for media of various Z [Evans, p. 605]. 

Comparison of Various Cross Sections 

It is instructive to compare the cross sections describing the interactions that we 

have considered between an incident electron and the atoms in the medium.  For 

nonrelativistic electrons, T ≤  0.1 Mev and β = v / c ≤ 0.5 , we have the following cross 

sections (all in barns/atom) [Evans, p. 607], 

σ ion = 
2α 

4 

Z 
ln⎜
⎛ 2T ⎞ 

β ⎜
⎝ I ⎟

⎠
⎟ ionization (14.6) 

αZ 2 

σ nuc =  backscattering by nuclei (14.7)
4β 4 

2αZσ el = 4 elastic scattering by atomic electrons (14.8)
β 

' 8α 1 Z 2 

σ rad = bremsstrahlung  (14.9)
3π 137 β 2 
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where α = 4π (e2 / mec
2 )2 = 1.00 barn. The values of these cross sections in the case of 

0.1 Mev electrons in air (Z = 7.22, I  ~ 100 ev) and in Pb (Z = 82, I  ~ 800 ev) are given 
'in the following table [from Evans, p.608].  The difference between σ rad  and σ rad  is that 

the former corresponds to fractional loss of total energy, dT /(T + mec
2 ) , while the latter 

corresponds to fractional loss of kinetic energy, dT/T. 

Mass Absorption

 Ionization losses per unit distance are proportional to nZ, the number of atomic 

electrons per cm3 in the absorber (medium).  We can express nZ as 

nZ = (ρNo / A)Z = ρNo (Z / A) (14.10) 

where ρ  is the mass density, g/cm3, and No the Avogadro’s number. Since the ratio 

(Z/A) is nearly a constant for all elements, it means that nZ / ρ  is also approximately 

constant (except for hydrogen). Therefore, if the distance along the path of the charged 

particle is measured in units of ρdx ≡ dw  (in g/cm2), then the ionization losses, -dT/dw 

(in ergs cm2/g) become more or less independent of the material.  We see in Fig. 14.1, the 

expected behavior of energy loss being material independent holds only approximately, 
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as -dT/dw actually decreases as Z increases. This is due to two reasons, Z/A decreasing 

slightly as Z increases and I  increasingly linearly with Z. 

Fig. 14.1.  Mass absorption energy losses, -dT/dw, for electrons in air, Al, and Pb, 

ionization losses (upper curves) versus bremsstrahlung (lower curves).  All curves refer 

to energy losses along the actual path of the electron.  [Evans, p.609] 

We have seen that ionization losses per path length vary mainly as 1/v2 while 

radiative losses increase with increasing energy.  The two become roughly comparable 

when T >> Mc2, or T >> mec2 in the case of electrons.  The ratio can be approximately 

expressed as 

rad e(dT / dx)
≈ Z⎛ 

m ⎞
2 ⎛ T ⎞ 

(14.11)(dT / dx)ion 

⎜
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2 ⎟⎟
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where for electrons, M →  me. The two losses are therefore equal in the case of electrons 

for T = 18 mec2 = 9 Mev in Pb and T ~ 100 Mev in water or air. 

Range, Range-Energy Relations, and Track Patterns 

When a charged particle enters an absorbing medium it immediately interacts 

with the many electrons in the medium.  For a heavy charged particle the deflection from 
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any individual encounter is small, so the track of the heavy charged particle tends to be 

quite straight except at the very end of its travel when it has lost practically all its kinetic 

energy. In this case we can estimate the range of the particle, the distance beyond which 

it cannot penetrate, by integrating the stopping power, 

R = ∫ 
R

dx = ∫ 
0 

⎜
⎛ dx 

⎟
⎞dT = 

T 

∫ 
o 

⎜
⎛− 

dT 
⎟
⎞
−1 

dT (14.12) 
0 To 

⎝ dT ⎠ 0 ⎝ dx ⎠ 

where To is the initial kinetic energy of the particle.  An estimate of R is given by taking 

the Bethe formula, (13.7), for the stopping power and ignoring the v-dependence in the 

logarithm.  Then one finds 

To

R ∝ ∫TdT = To
2 (14.13) 

0

This is an example of a range-energy relation.  Given what we have said about the region 

of applicability of (13.7) one might expect this behavior to hold at low energies.  At high 

energies it is more reasonable to take the stopping power to be a constant, in which case 

To

R ∝ ∫ dT = T  (14.14)o
0

We will return to see whether such behavior are seen in experiments. 

Experimentally one can determine the energy loss by the number of ion pairs 

produced from an ionization event.  The amount of energy W required for a particle of 

certain energy to produce an ion pair is known.  The number of ion pairs, i, produced per 

unit path length (specific ionization) of the charged particle is then 

i = 
1 ⎛
⎜− 

dT ⎞
⎟ (14.15)

W ⎝ dx ⎠ 
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The quantity W depends on complicated processes such as atomic excitation and 

secondary ionization in addition to primary ionization.  On the other hand, for a given 

material it is approximately independent of the nature of the particle or its kinetic energy.  

For example, in air the values of W are 35.0, 35.2, and 33.3 ev for 5 kev electrons, 5.3 

Mev alphas, and 340 Mev protons respectively. 

The specific ionization is an appropriate measure of the ionization processes 

taking place along the path (track length) of the charged particle.  It is useful to regard 

(14.15) as a function of the distance traveled by the particle.  Such results can be seen in 

Fig. 14.2, where one sees  a characteristic shape of the ionization curve for a heavy 

charged particle. Ionization is constant or increasing slowly during the early to mid 

stages of the total travel, then it rises more quickly and reaches a peak value at the end of 

the range before dropping sharply to zero. 

Fig. 14.2.  Specific ionization of heavy particles in air.  Residual range refers to the 

distance still to travel before coming to rest.  Proton range is 0.2 cm shorter than that of 

the α -particle [Meyerhof, p.80]. 

We have already mentioned that as the charged particle loses energy and slows 

down, the probability of capturing electron increases.  So the mean charge of a beam of 

particles will decrease with the decrease in their speed (cf. Fig. 13.3).  This is the reason 

why the specific ionization shows a sharp drop.  The value of –dT/dx along a particle 

track is also called specific energy loss.  A plot of –dT/dx along the track of a charged 

particle is known as a Bragg curve.  It should be emphasized that a Bragg curve differs 
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from a plot of –dT/dx for an individual particle in that the former is an average over a 

large number of particles.  Hence the Bragg curve includes the effects of straggling 

(statistical distribution of range values for particles having the same initial velocity) and 

has a pronounced tail beyond the extrapolated range as can be seen in Fig. 14.3.   

Fig. 14.3. Specific ionization for an individual particle versus Bragg curve [Evans, p. 

666]. 
A typical experimental arrangement for determining the range of charged particles 

is shown in Fig. 14.4. The mean range R is defined as the absorber thickness at which 

the intensity is reduced to one-half of the initial value.  The extrapolated range Ro is 

obtained by linear extrapolation at the inflection point of the transmission curve.  This is 

an example that I/Io is not always an exponential.  In charged particle interactions it is 

not sufficient to think of I / I o = e−µx , one should be thinking about the range R. 

Fig. 14.4. Determination of range by transmission experiment [from Knoll]. 9 
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In practice one uses range-energy relations that are mostly empirically 


determined.  For a rough estimate of the range one can use the Bragg-Kleeman rule, 


R 
=
ρ1 A 

(14.16)
R1 ρ A1 

where the subscript 1 denotes the reference medium which is conventionally taken to be 

air at 15oC, 760 mm Hg ( A1 = 3.81, ρ1 = 1.226 x 10-3 g/cm3). Then 

R = 3.2x10−4 A x Rair  (14.17)
ρ 

with ρ  in g/cm3. In general such an estimate is good to within about ±  15 percent. 

Figs. 14.5 and 14.6 show the range-energy relations for protons and α -particles in air 

respectively.  Notice that at low energy the variation is quadratic, as predicted by (14.13), 

and at high energy the relation is more or less linear, as given by (14.14).  The same trend 

is also seen in the results for electrons, as shown in Fig. 14.7.  

Fig. 14.5. Range-energy relations of α -particles in air [Evans, p. 650]. 
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Fig. 14.6. Range-energy relation for protons in air [Evans, p. 651]. 

Fig. 14.7.  Range-energy relation for electrons in aluminum [Evans, p. 624]. 

We have mentioned that heavy charged particles traverse essentially in a straight 

line until reaching the end of its range where straggling effects manifest.  In the case of 
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electrons large deflections are quite likely during its traversal, so the trajectory of electron 

in a thick absorber is a series of zigzag paths.  While one can still speak of the range R, 

the concept of path length is now of little value.  This is illustrated in Figs. 14.8 and 14.9.  

The total path length S is appreciably greater than the range R   

Fig. 14.8.  Distinction between total path length S and range R [Evans, p. 612] 
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Fig. 14.9. Comparing distributions of total path length and range for electrons in oxygen 

[Evans, p. 612]. 

The transmission curve I/Io for a heavy charged particle was shown in Fig. 14.4. 

The curve has a different characteristic shape for monoenergetic electrons, as indicated in 

Fig. 14.10, and a still different shape for β -rays (electrons with a distribution of 

energies), seen in Fig. 14.11. Although the curve for monoenergetic electrons depends to 

some extent on experimental arrangement, one may regard it as roughly a linear variation 

which is characteristic of single interaction event in removing the electron.  That is, the 

fraction of electrons getting through is proportional to 1 – P, where P is the interaction 

probability which is in turn proportional to the thickness.  For the β -ray transmission 

curve which essentially has the form of an exponential, the shape is an accidental 

consequence of the β -ray spectrum and of the differences between the scattering and 

absorption of electrons which have various initial energies [cf. Evans, p. 625].  It is found 

empirically that Rm is the same as Ro if the monoenergetic electrons are given the energy 

E = Emax, the maximum energy of the β -ray spectrum (the end-point energy).    

Fig. 14. 10. Transmission curve of monoenergetic electrons (sensitive to experimental 

arrangement) [Evans, p. 623]. 
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Fig. 14.11.  Transmission curve for β -rays [Evans, p.625]. 

Cerenkov Radiation 

Electromagnetic radiation is emitted when a charged particle passes through a 

medium under the condition 

vgroup ≡ βc > v phase ≡ c / n (14.15) 

where n is the index of refraction of the medium.  When βn  >1, there is an angle (a 

direction) where constructive interference occurs.  This radiation is a particular form of 

energy loss, due to soft collisions, and is not an additional amount of energy loss.  Soft 

collisions involve small energy transfers from charged particles to distant atoms which 

become excited and subsequently emit coherent radiation (see Evans, p. 589). 
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